CodeForces999E 双dfs // 标记覆盖 // tarjan缩点
http://codeforces.com/problemset/problem/999/E
题意 有向图 给你n个点,m条边,以及一个初始点s,问你至少还需要增加多少条边,使得初始点s与剩下其他的所有点都连通。
第一个想法自然是通过上标记的方法,对每一个入度为0的点跑dfs。
但是问题在于剩下没有上标记的点,是成环的点。这些点不能有效的形成我们希望的拓扑序。
第一个想法是可以考虑上特殊标记,顺序枚举每个环上的点跑dfs,对每个随机跑的点上标记,在dfs的过程中如果可以经过之前枚举跑到的起点,就去掉这个点的标记,随后统计特殊标记的数量,经过测试,确实可以AC
#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int N,M,tmp,K,s;
bool vis[maxn];
bool vis2[maxn];
bool vis3[maxn];
int ind[maxn];
struct Edge{
int to,next;
}edge[maxn];
int head[maxn],tot,ans;
void init(){
Mem(head,);
tot = ;
}
void add(int u,int v){
edge[++tot].next = head[u];
edge[tot].to = v;
head[u] = tot;
}
void dfs(int t){
vis[t] = ;
for(int i = head[t]; i;i = edge[i].next){
int v = edge[i].to;
if(vis[v]) continue;
dfs(v);
}
}
void dfs2(int t){
vis3[t] = ;
vis[t] = ;
for(int i = head[t];i;i = edge[i].next){
int v = edge[i].to;
if(vis2[v]){
vis2[v] = ;
ans--;
}
if(vis3[v]) continue;
dfs2(v);
}
}
int main()
{
scanf("%d%d%d",&N,&M,&s);
init();
For(i,,M){
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
ind[v]++;
}
dfs(s);
ans = ;
For(i,,N){
if(!ind[i] && !vis[i]){
ans++;
dfs(i);
}
}
For(i,,N){
if(!vis[i]){
Mem(vis3,);
ans++;
dfs2(i);
vis2[i] = ;
}
}
Pri(ans);
#ifdef VSCode
system("pause");
#endif
return ;
}
第二个想法是标记覆盖,顺序dfs每一个点,以每一个点为起点经过的点用不同标记覆盖,最后判断所有标记的数量
#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int N,M,tmp,K,s;
int vis[maxn];
bool vis2[maxn];
bool vis3[maxn];
int ind[maxn];
struct Edge{
int to,next;
}edge[maxn];
int head[maxn],tot,ans;
void init(){
Mem(head,);
tot = ;
}
void add(int u,int v){
edge[++tot].next = head[u];
edge[tot].to = v;
head[u] = tot;
}
void dfs(int t){
vis[t] = tmp;
for(int i = head[t]; i;i = edge[i].next){
int v = edge[i].to;
if(vis[v] == tmp) continue;
dfs(v);
}
}
int main()
{
scanf("%d%d%d",&N,&M,&s);
init();
For(i,,M){
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
}
tmp = ;
dfs(s);
For(i,,N){
if(!vis[i]){
tmp++;
dfs(i);
}
}
ans = ;
vis2[] = ;
For(i,,N){
if(!vis2[vis[i]]){
vis2[vis[i]] = ;
ans++;
}
}
Pri(ans);
#ifdef VSCode
system("pause");
#endif
return ;
}
当然,以上两个算法都是O(n2)的算法,这题5000的数据范围可以跑,但是当数据范围扩大的时候,就需要考虑更强的算法来解决;
用Tarjan算法将原图缩点变成一个可拓扑的dag图,直接数入度为0的点即可。
#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int N,M,tmp,K,s;
int vis[maxn];
struct Edge{
int to,next;
}edge[maxn];
int head[maxn],tot,ans;
int Low[maxn],dfn[maxn],Stack[maxn],belong[maxn];
int index,top,scc;
bool Instack[maxn];
int ind[maxn];
int num[maxn];
void Tarjan(int u){
int v;
Low[u] = dfn[u] = ++ index;
Stack[top++] = u;
Instack[u] = true;
for(int i = head[u];i;i =edge[i].next){
int v = edge[i].to;
if(!dfn[v]){
Tarjan(v);
if(Low[u] > Low[v]) Low[u] = Low[v];
}else if(Instack[v] && Low[u] > dfn[v]){
Low[u] = dfn[v];
}
}
if(Low[u] == dfn[u]){
scc++;
do{
v = Stack[--top];
Instack[v] = false;
belong[v] = scc;
num[scc]++;
}while(v != u);
}
}
void init(){
Mem(head,);
tot = ;
}
void add(int u,int v){
edge[++tot].next = head[u];
edge[tot].to = v;
head[u] = tot;
} int main()
{
scanf("%d%d%d",&N,&M,&s);
init();
For(i,,M){
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
}
index = scc = top = ;
For(i,,N) if(!dfn[i]) Tarjan(i);
int ans = ;
For(i,,N){
for(int j = head[i];j;j = edge[j].next){
int v = edge[j].to;
if(belong[i] != belong[v]){
ind[belong[v]] = ;
}
}
}
vis[belong[s]] = ;
For(i,,N){
if(!ind[belong[i]] && !vis[belong[i]]){
vis[belong[i]] = ;
ans++;
}
}
Pri(ans);
#ifdef VSCode
system("pause");
#endif
return ;
}
CodeForces999E 双dfs // 标记覆盖 // tarjan缩点的更多相关文章
- hihoCoder 1185 连通性·三(Tarjan缩点+暴力DFS)
#1185 : 连通性·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家.今天一大早,约翰因为有事要出 ...
- POJ-3352 Road Construction,tarjan缩点求边双连通!
Road Construction 本来不想做这个题,下午总结的时候发现自己花了一周的时间学连通图却连什么是边双连通不清楚,于是百度了一下相关内容,原来就是一个点到另一个至少有两条不同的路. 题意:给 ...
- BZOJ2199[Usaco2011 Jan]奶牛议会——2-SAT+tarjan缩点
题目描述 由于对Farmer John的领导感到极其不悦,奶牛们退出了农场,组建了奶牛议会.议会以“每头牛 都可以获得自己想要的”为原则,建立了下面的投票系统: M只到场的奶牛 (1 <= M ...
- 间谍网络(tarjan缩点)
洛谷传送门 看着这道题给人感觉就是tarjan求SCC,然而还得判断是否能控制全部间谍,这就得先从可以贿赂的点dfs一遍. 如果没有全部被标记了,就输出NO,再从没被标记的点里找最小的标号. 如果全被 ...
- tarjan缩点(洛谷P387)
此题解部分借鉴于九野的博客 题目分析 给定一个 \(n\) 个点 \(m\) 条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 允许多次经过一条边或者一个 ...
- 【BZOJ-1797】Mincut 最小割 最大流 + Tarjan + 缩点
1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1685 Solved: 724[Submit] ...
- HDU4612+Tarjan缩点+BFS求树的直径
tarjan+缩点+树的直径题意:给出n个点和m条边的图,存在重边,问加一条边以后,剩下的桥的数量最少为多少.先tarjan缩点,再在这棵树上求直径.加的边即是连接这条直径的两端. /* tarjan ...
- poj3694(tarjan缩点+lca)
传送门:Network 题意:给你一个连通图,然后再给你n个询问,每个询问给一个点u,v表示加上u,v之后又多少个桥. 分析:方法(1219ms):用并查集缩点,把不是桥的点缩成一个点,然后全图都是桥 ...
- 强连通分量tarjan缩点——POJ2186 Popular Cows
这里的Tarjan是基于DFS,用于求有向图的强联通分量. 运用了一个点dfn时间戳和low的关系巧妙地判断出一个强联通分量,从而实现一次DFS即可求出所有的强联通分量. §有向图中, u可达v不一定 ...
随机推荐
- 获取SpringMVC所有的rest接口及其对应函数信息
package com.geostar.gfstack.operationcenter.core.cloud.action; import com.geostar.gfstack.operationc ...
- spring boot项目基本结构
/==================================Controller @Controller public class SimpleController { @Autowired ...
- Typecho——简介及安装
Typecho Typecho是由type和echo两个词合成的,来自于开发团队的头脑风暴.Typecho基于PHP5开发,支持多种数据库,是一款内核强健﹑扩展方便﹑体验友好﹑运行流畅的轻量级开源博客 ...
- phpcms 手机门户配置注意事项
设置域名解析后,服务器apache,iis,nginx等,设置虚拟服务器时, 如下,只设置index.php为默认入口文件: 默认pc站为index.html为默认访问文件! pc与wap站,绑定目录 ...
- mysql 0x80004005 unable to connect to any of the specified mysql hosts
语言:c# 问题:偶尔会出现连不上mysql 报标题的这个错误. 解决方法:把server = localhost 改为 =127.0.0.1 或者静态IP ,按着改暂时没出现了,继续观望!
- SCOI 2015 Day1 简要题解
「SCOI2015」小凸玩矩阵 题意 一个 \(N \times M\)( $ N \leq M $ )的矩阵 $ A $,要求小凸从其中选出 $ N $ 个数,其中任意两个数字不能在同一行或同一列, ...
- Android assets的一个bug
摘要 Android assets目录下资源文件超过1MB的问题. 由于要显示一些奇奇怪怪的日文字符,我们在应用里放了一个字库文件,譬如叫做jp.ttf,放在assets目录下打包. 开发.调试一切正 ...
- FLAG区
以下是一些flag(倒了我也不会怎么样): 更博客(对不起 您呼叫的flag是空号 请稍后再拨) CTS/APIO2019 Cu+ NOI2019 Ag+
- cf1088E Ehab and a component choosing problem (树形dp)
题意(考试时看错了对着样例wa了好久..):从树上选k个连通块,使得权值的平均值最大的基础上,选的块数最多 如果不考虑块数最多的限制,肯定是只选一个权值最大的块是最好的 然后只要看这个权值最大的块有多 ...
- [JLOI2014]聪明的燕姿(搜索)
城市中人们总是拿着号码牌,不停寻找,不断匹配,可是谁也不知道自己等的那个人是谁. 可是燕姿不一样,燕姿知道自己等的人是谁,因为燕姿数学学得好!燕姿发现了一个神奇的算法:假设自己的号码牌上写着数字 S, ...