参考:https://blog.csdn.net/u013733326/article/details/79847918

希望大家直接到上面的网址去查看代码,下面是本人的笔记

5.梯度校验

在我们执行反向传播的计算过程中,反向传播函数的计算过程是比较复杂的。为了验证我们得到的反向传播函数是否正确,现在你需要编写一些代码来验证反向传播函数的正确性

1)一维线性(从简单的情况开始)

1》前向传播

def forward_propagation(x,theta):
""" 实现图中呈现的线性前向传播(计算J)(J(theta)= theta * x) 参数:
x - 一个实值输入
theta - 参数,也是一个实数 返回:
J - 函数J的值,用公式J(theta)= theta * x计算
"""
J = np.dot(theta,x) return J

测试:

#测试forward_propagation
print("-----------------测试forward_propagation-----------------")
x, theta = ,
J = forward_propagation(x, theta)
print ("J = " + str(J))

返回:

-----------------测试forward_propagation-----------------
J =

2》后向传播

def backward_propagation(x,theta):
"""
计算J相对于θ的导数。 参数:
x - 一个实值输入
theta - 参数,也是一个实数 返回:
dtheta - 相对于θ的成本梯度
"""
dtheta = x return dtheta

测试:

#测试backward_propagation
print("-----------------测试backward_propagation-----------------")
x, theta = ,
dtheta = backward_propagation(x, theta)
print ("dtheta = " + str(dtheta))

返回:

-----------------测试backward_propagation-----------------
dtheta =

然后就能够进行梯度检验了:

计算估计的gradapprox和实际计算出来的grad的差别大不大

def gradient_check(x,theta,epsilon=1e-):
""" 实现图中的反向传播。 参数:
x - 一个实值输入
theta - 参数,也是一个实数
epsilon - 使用公式()计算输入的微小偏移以计算近似梯度 返回:
近似梯度和后向传播梯度之间的差异
""" #使用公式()的左侧计算gradapprox。
thetaplus = theta + epsilon # Step
thetaminus = theta - epsilon # Step
J_plus = forward_propagation(x, thetaplus) # Step
J_minus = forward_propagation(x, thetaminus) # Step
gradapprox = (J_plus - J_minus) / ( * epsilon) # Step #检查gradapprox是否足够接近backward_propagation()的输出
grad = backward_propagation(x, theta) numerator = np.linalg.norm(grad - gradapprox) # Step '
denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox) # Step '
difference = numerator / denominator # Step ' if difference < 1e-:
print("梯度检查:梯度正常!")
else:
print("梯度检查:梯度超出阈值!") return difference

测试:

#测试gradient_check
print("-----------------测试gradient_check-----------------")
x, theta = ,
difference = gradient_check(x, theta)
print("difference = " + str(difference))

返回:

-----------------测试gradient_check-----------------
梯度检查:梯度正常!
difference = 2.919335883291695e-10

2)高维

高维的区别在于:

然而,θ即参数不再是标量,而是一个名为“parameters”的字典。

在这里实现了一个函数“dictionary_to_vector()”,它将“parameters”字典转换为一个称为“values”的向量,通过将所有参数(W1,b1,W2,b2,W3,b3)转为向量并将它们连接起来而获得。

反函数是“vector_to_dictionary”,它返回“parameters”字典。

所以差别就是需要对多个参数进行梯度检验

前后向传播函数为:

def forward_propagation_n(X,Y,parameters):
"""
实现图中的前向传播(并计算成本)。 参数:
X - 训练集为m个例子
Y - m个示例的标签
parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典:
W1 - 权重矩阵,维度为(,)
b1 - 偏向量,维度为(,)
W2 - 权重矩阵,维度为(,)
b2 - 偏向量,维度为(,)
W3 - 权重矩阵,维度为(,)
b3 - 偏向量,维度为(,) 返回:
cost - 成本函数(logistic)
"""
m = X.shape[]
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
W3 = parameters["W3"]
b3 = parameters["b3"] # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
Z1 = np.dot(W1,X) + b1
A1 = gc_utils.relu(Z1) Z2 = np.dot(W2,A1) + b2
A2 = gc_utils.relu(Z2) Z3 = np.dot(W3,A2) + b3
A3 = gc_utils.sigmoid(Z3) #计算成本
logprobs = np.multiply(-np.log(A3), Y) + np.multiply(-np.log( - A3), - Y)
cost = ( / m) * np.sum(logprobs) cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) return cost, cache def backward_propagation_n(X,Y,cache):
"""
实现图中所示的反向传播。 参数:
X - 输入数据点(输入节点数量,)
Y - 标签
cache - 来自forward_propagation_n()的cache输出 返回:
gradients - 一个字典,其中包含与每个参数、激活和激活前变量相关的成本梯度。
"""
m = X.shape[]
(Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache dZ3 = A3 - Y
dW3 = (. / m) * np.dot(dZ3,A2.T)
dW3 = . / m * np.dot(dZ3, A2.T)
db3 = . / m * np.sum(dZ3, axis=, keepdims=True) dA2 = np.dot(W3.T, dZ3)
dZ2 = np.multiply(dA2, np.int64(A2 > ))
#dW2 = . / m * np.dot(dZ2, A1.T) * # Should not multiply by
dW2 = . / m * np.dot(dZ2, A1.T)
db2 = . / m * np.sum(dZ2, axis=, keepdims=True) dA1 = np.dot(W2.T, dZ2)
dZ1 = np.multiply(dA1, np.int64(A1 > ))
dW1 = . / m * np.dot(dZ1, X.T)
#db1 = . / m * np.sum(dZ1, axis=, keepdims=True) # Should not multiply by
db1 = . / m * np.sum(dZ1, axis=, keepdims=True) gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,
"dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,
"dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1} return gradients

梯度检验函数为:

def gradient_check_n(parameters,gradients,X,Y,epsilon=1e-):
"""
检查backward_propagation_n是否正确计算forward_propagation_n输出的成本梯度 参数:
parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典:
grad_output_propagation_n的输出包含与参数相关的成本梯度。
x - 输入数据点,维度为(输入节点数量,)
y - 标签
epsilon - 计算输入的微小偏移以计算近似梯度 返回:
difference - 近似梯度和后向传播梯度之间的差异
"""
#初始化参数
parameters_values , keys = gc_utils.dictionary_to_vector(parameters) #keys用不到
grad = gc_utils.gradients_to_vector(gradients)
num_parameters = parameters_values.shape[]
J_plus = np.zeros((num_parameters,))
J_minus = np.zeros((num_parameters,))
gradapprox = np.zeros((num_parameters,)) #计算gradapprox
for i in range(num_parameters):
#计算J_plus [i]。输入:“parameters_values,epsilon”。输出=“J_plus [i]”
thetaplus = np.copy(parameters_values) # Step
thetaplus[i][] = thetaplus[i][] + epsilon # Step
J_plus[i], cache = forward_propagation_n(X,Y,gc_utils.vector_to_dictionary(thetaplus)) # Step ,cache用不到 #计算J_minus [i]。输入:“parameters_values,epsilon”。输出=“J_minus [i]”。
thetaminus = np.copy(parameters_values) # Step
thetaminus[i][] = thetaminus[i][] - epsilon # Step
J_minus[i], cache = forward_propagation_n(X,Y,gc_utils.vector_to_dictionary(thetaminus))# Step ,cache用不到 #计算gradapprox[i]
gradapprox[i] = (J_plus[i] - J_minus[i]) / ( * epsilon) #通过计算差异比较gradapprox和后向传播梯度。
numerator = np.linalg.norm(grad - gradapprox) # Step '
denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox) # Step '
difference = numerator / denominator # Step ' if difference < 1e-:
print("梯度检查:梯度正常!")
else:
print("梯度检查:梯度超出阈值!") return difference

吴恩达课后作业学习2-week1-3梯度校验的更多相关文章

  1. 吴恩达课后作业学习2-week1-1 初始化

    参考:https://blog.csdn.net/u013733326/article/details/79847918 希望大家直接到上面的网址去查看代码,下面是本人的笔记 初始化.正则化.梯度校验 ...

  2. 吴恩达课后作业学习2-week1-2正则化

    参考:https://blog.csdn.net/u013733326/article/details/79847918 希望大家直接到上面的网址去查看代码,下面是本人的笔记 4.正则化 1)加载数据 ...

  3. 吴恩达课后作业学习1-week4-homework-two-hidden-layer -1

    参考:https://blog.csdn.net/u013733326/article/details/79767169 希望大家直接到上面的网址去查看代码,下面是本人的笔记 两层神经网络,和吴恩达课 ...

  4. 吴恩达课后作业学习1-week4-homework-multi-hidden-layer -2

    参考:https://blog.csdn.net/u013733326/article/details/79767169 希望大家直接到上面的网址去查看代码,下面是本人的笔记 实现多层神经网络 1.准 ...

  5. 吴恩达课后作业学习1-week2-homework-logistic

    参考:https://blog.csdn.net/u013733326/article/details/79639509 希望大家直接到上面的网址去查看代码,下面是本人的笔记 搭建一个能够 “识别猫” ...

  6. 吴恩达课后作业学习1-week3-homework-one-hidden-layer

    参考:https://blog.csdn.net/u013733326/article/details/79702148 希望大家直接到上面的网址去查看代码,下面是本人的笔记 建立一个带有隐藏层的神经 ...

  7. 吴恩达课后作业学习2-week3-tensorflow learning-1-基本概念

    参考:https://blog.csdn.net/u013733326/article/details/79971488 希望大家直接到上面的网址去查看代码,下面是本人的笔记  到目前为止,我们一直在 ...

  8. 吴恩达课后作业学习2-week2-优化算法

    参考:https://blog.csdn.net/u013733326/article/details/79907419 希望大家直接到上面的网址去查看代码,下面是本人的笔记 我们需要做以下几件事:  ...

  9. 吴恩达课后作业学习2-week3-tensorflow learning-1-例子学习

    参考:https://blog.csdn.net/u013733326/article/details/79971488 使用TensorFlow构建你的第一个神经网络 我们将会使用TensorFlo ...

随机推荐

  1. C# SqlBulkCopy类批量导入 测试

    一.功能说明 1.可以选择,只导入部分列,或者导入全部列. 2.导入速度的确比一般sql要快. 3.不用写sql语句 ----------------------------------------- ...

  2. sass安装和语法

    1.简介 sass 它的基本思想是,用一种专门的编程语言,进行网页样式设计,然后再编译成正常的CSS文件.这被叫做“css预处理器”(css preprocessor).它提供了很便利的语法,节省了我 ...

  3. Linux 安装 lrzsz,使用 rz、sz 上传下载文件

    yum install -y lrzsz 上传文件到服务器 rz 命令后会出现一个文件选择框,选择.确定即可 从服务器下载文件 sz 文件名即可

  4. htnl 定位

    相对定位 相对定位:position:relative; 相对定位:相对定位是相对于元素在文档中的初始位置——首先它出现在它所在的位置上(即不设置position时的位置,然后通过设置垂直或水平位置, ...

  5. 基于cifar10实现卷积神经网络图像识别

    import tensorflow as tf import numpy as np import math import time import cifar10 import cifar10_inp ...

  6. 漫说996icu黑名单

    以实际行动声援996icu项目. https://github.com/996icu/996.ICU/blob/master/blacklist/blacklist.md 996公司黑名单,京东,华为 ...

  7. mssql sqlserver update delete表别名用法简介

    转自:http://www.maomao365.com/?p=6973  摘要: 在sql脚本编写中,如果需要在update delete 中使用表别名的方法,必须按照一定的规则编写,否则将会出现相应 ...

  8. 四、Tableau如何设置数据格式

    一.要求 ‘销售额’:K为单位 ‘利润’:        M为单位,负值用括号括起来,但是正值 ‘利润率’:带百分号,负值用括号括起来仍然时负值 二.解决方案 1.‘销售额’:m为单位 2.‘利润’: ...

  9. Linux进程启动过程分析do_execve(可执行程序的加载和运行)---Linux进程的管理与调度(十一)

    execve系统调用 execve系统调用 我们前面提到了, fork, vfork等复制出来的进程是父进程的一个副本, 那么如何我们想加载新的程序, 可以通过execve来加载和启动新的程序. x8 ...

  10. mysql 数据库安装

    一.Mysql的安装 1. 安装mysql-server服务端 版本5.7.19-0ubuntu0.16.04.1 目前可以下载的版本: 5.5 5.6 5.7 8.0 测试版 输入:(我这里不需要客 ...