参考:https://blog.csdn.net/u013733326/article/details/79847918

希望大家直接到上面的网址去查看代码,下面是本人的笔记

5.梯度校验

在我们执行反向传播的计算过程中,反向传播函数的计算过程是比较复杂的。为了验证我们得到的反向传播函数是否正确,现在你需要编写一些代码来验证反向传播函数的正确性

1)一维线性(从简单的情况开始)

1》前向传播

def forward_propagation(x,theta):
""" 实现图中呈现的线性前向传播(计算J)(J(theta)= theta * x) 参数:
x - 一个实值输入
theta - 参数,也是一个实数 返回:
J - 函数J的值,用公式J(theta)= theta * x计算
"""
J = np.dot(theta,x) return J

测试:

#测试forward_propagation
print("-----------------测试forward_propagation-----------------")
x, theta = ,
J = forward_propagation(x, theta)
print ("J = " + str(J))

返回:

-----------------测试forward_propagation-----------------
J =

2》后向传播

def backward_propagation(x,theta):
"""
计算J相对于θ的导数。 参数:
x - 一个实值输入
theta - 参数,也是一个实数 返回:
dtheta - 相对于θ的成本梯度
"""
dtheta = x return dtheta

测试:

#测试backward_propagation
print("-----------------测试backward_propagation-----------------")
x, theta = ,
dtheta = backward_propagation(x, theta)
print ("dtheta = " + str(dtheta))

返回:

-----------------测试backward_propagation-----------------
dtheta =

然后就能够进行梯度检验了:

计算估计的gradapprox和实际计算出来的grad的差别大不大

def gradient_check(x,theta,epsilon=1e-):
""" 实现图中的反向传播。 参数:
x - 一个实值输入
theta - 参数,也是一个实数
epsilon - 使用公式()计算输入的微小偏移以计算近似梯度 返回:
近似梯度和后向传播梯度之间的差异
""" #使用公式()的左侧计算gradapprox。
thetaplus = theta + epsilon # Step
thetaminus = theta - epsilon # Step
J_plus = forward_propagation(x, thetaplus) # Step
J_minus = forward_propagation(x, thetaminus) # Step
gradapprox = (J_plus - J_minus) / ( * epsilon) # Step #检查gradapprox是否足够接近backward_propagation()的输出
grad = backward_propagation(x, theta) numerator = np.linalg.norm(grad - gradapprox) # Step '
denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox) # Step '
difference = numerator / denominator # Step ' if difference < 1e-:
print("梯度检查:梯度正常!")
else:
print("梯度检查:梯度超出阈值!") return difference

测试:

#测试gradient_check
print("-----------------测试gradient_check-----------------")
x, theta = ,
difference = gradient_check(x, theta)
print("difference = " + str(difference))

返回:

-----------------测试gradient_check-----------------
梯度检查:梯度正常!
difference = 2.919335883291695e-10

2)高维

高维的区别在于:

然而,θ即参数不再是标量,而是一个名为“parameters”的字典。

在这里实现了一个函数“dictionary_to_vector()”,它将“parameters”字典转换为一个称为“values”的向量,通过将所有参数(W1,b1,W2,b2,W3,b3)转为向量并将它们连接起来而获得。

反函数是“vector_to_dictionary”,它返回“parameters”字典。

所以差别就是需要对多个参数进行梯度检验

前后向传播函数为:

def forward_propagation_n(X,Y,parameters):
"""
实现图中的前向传播(并计算成本)。 参数:
X - 训练集为m个例子
Y - m个示例的标签
parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典:
W1 - 权重矩阵,维度为(,)
b1 - 偏向量,维度为(,)
W2 - 权重矩阵,维度为(,)
b2 - 偏向量,维度为(,)
W3 - 权重矩阵,维度为(,)
b3 - 偏向量,维度为(,) 返回:
cost - 成本函数(logistic)
"""
m = X.shape[]
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
W3 = parameters["W3"]
b3 = parameters["b3"] # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
Z1 = np.dot(W1,X) + b1
A1 = gc_utils.relu(Z1) Z2 = np.dot(W2,A1) + b2
A2 = gc_utils.relu(Z2) Z3 = np.dot(W3,A2) + b3
A3 = gc_utils.sigmoid(Z3) #计算成本
logprobs = np.multiply(-np.log(A3), Y) + np.multiply(-np.log( - A3), - Y)
cost = ( / m) * np.sum(logprobs) cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) return cost, cache def backward_propagation_n(X,Y,cache):
"""
实现图中所示的反向传播。 参数:
X - 输入数据点(输入节点数量,)
Y - 标签
cache - 来自forward_propagation_n()的cache输出 返回:
gradients - 一个字典,其中包含与每个参数、激活和激活前变量相关的成本梯度。
"""
m = X.shape[]
(Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache dZ3 = A3 - Y
dW3 = (. / m) * np.dot(dZ3,A2.T)
dW3 = . / m * np.dot(dZ3, A2.T)
db3 = . / m * np.sum(dZ3, axis=, keepdims=True) dA2 = np.dot(W3.T, dZ3)
dZ2 = np.multiply(dA2, np.int64(A2 > ))
#dW2 = . / m * np.dot(dZ2, A1.T) * # Should not multiply by
dW2 = . / m * np.dot(dZ2, A1.T)
db2 = . / m * np.sum(dZ2, axis=, keepdims=True) dA1 = np.dot(W2.T, dZ2)
dZ1 = np.multiply(dA1, np.int64(A1 > ))
dW1 = . / m * np.dot(dZ1, X.T)
#db1 = . / m * np.sum(dZ1, axis=, keepdims=True) # Should not multiply by
db1 = . / m * np.sum(dZ1, axis=, keepdims=True) gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,
"dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,
"dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1} return gradients

梯度检验函数为:

def gradient_check_n(parameters,gradients,X,Y,epsilon=1e-):
"""
检查backward_propagation_n是否正确计算forward_propagation_n输出的成本梯度 参数:
parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典:
grad_output_propagation_n的输出包含与参数相关的成本梯度。
x - 输入数据点,维度为(输入节点数量,)
y - 标签
epsilon - 计算输入的微小偏移以计算近似梯度 返回:
difference - 近似梯度和后向传播梯度之间的差异
"""
#初始化参数
parameters_values , keys = gc_utils.dictionary_to_vector(parameters) #keys用不到
grad = gc_utils.gradients_to_vector(gradients)
num_parameters = parameters_values.shape[]
J_plus = np.zeros((num_parameters,))
J_minus = np.zeros((num_parameters,))
gradapprox = np.zeros((num_parameters,)) #计算gradapprox
for i in range(num_parameters):
#计算J_plus [i]。输入:“parameters_values,epsilon”。输出=“J_plus [i]”
thetaplus = np.copy(parameters_values) # Step
thetaplus[i][] = thetaplus[i][] + epsilon # Step
J_plus[i], cache = forward_propagation_n(X,Y,gc_utils.vector_to_dictionary(thetaplus)) # Step ,cache用不到 #计算J_minus [i]。输入:“parameters_values,epsilon”。输出=“J_minus [i]”。
thetaminus = np.copy(parameters_values) # Step
thetaminus[i][] = thetaminus[i][] - epsilon # Step
J_minus[i], cache = forward_propagation_n(X,Y,gc_utils.vector_to_dictionary(thetaminus))# Step ,cache用不到 #计算gradapprox[i]
gradapprox[i] = (J_plus[i] - J_minus[i]) / ( * epsilon) #通过计算差异比较gradapprox和后向传播梯度。
numerator = np.linalg.norm(grad - gradapprox) # Step '
denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox) # Step '
difference = numerator / denominator # Step ' if difference < 1e-:
print("梯度检查:梯度正常!")
else:
print("梯度检查:梯度超出阈值!") return difference

吴恩达课后作业学习2-week1-3梯度校验的更多相关文章

  1. 吴恩达课后作业学习2-week1-1 初始化

    参考:https://blog.csdn.net/u013733326/article/details/79847918 希望大家直接到上面的网址去查看代码,下面是本人的笔记 初始化.正则化.梯度校验 ...

  2. 吴恩达课后作业学习2-week1-2正则化

    参考:https://blog.csdn.net/u013733326/article/details/79847918 希望大家直接到上面的网址去查看代码,下面是本人的笔记 4.正则化 1)加载数据 ...

  3. 吴恩达课后作业学习1-week4-homework-two-hidden-layer -1

    参考:https://blog.csdn.net/u013733326/article/details/79767169 希望大家直接到上面的网址去查看代码,下面是本人的笔记 两层神经网络,和吴恩达课 ...

  4. 吴恩达课后作业学习1-week4-homework-multi-hidden-layer -2

    参考:https://blog.csdn.net/u013733326/article/details/79767169 希望大家直接到上面的网址去查看代码,下面是本人的笔记 实现多层神经网络 1.准 ...

  5. 吴恩达课后作业学习1-week2-homework-logistic

    参考:https://blog.csdn.net/u013733326/article/details/79639509 希望大家直接到上面的网址去查看代码,下面是本人的笔记 搭建一个能够 “识别猫” ...

  6. 吴恩达课后作业学习1-week3-homework-one-hidden-layer

    参考:https://blog.csdn.net/u013733326/article/details/79702148 希望大家直接到上面的网址去查看代码,下面是本人的笔记 建立一个带有隐藏层的神经 ...

  7. 吴恩达课后作业学习2-week3-tensorflow learning-1-基本概念

    参考:https://blog.csdn.net/u013733326/article/details/79971488 希望大家直接到上面的网址去查看代码,下面是本人的笔记  到目前为止,我们一直在 ...

  8. 吴恩达课后作业学习2-week2-优化算法

    参考:https://blog.csdn.net/u013733326/article/details/79907419 希望大家直接到上面的网址去查看代码,下面是本人的笔记 我们需要做以下几件事:  ...

  9. 吴恩达课后作业学习2-week3-tensorflow learning-1-例子学习

    参考:https://blog.csdn.net/u013733326/article/details/79971488 使用TensorFlow构建你的第一个神经网络 我们将会使用TensorFlo ...

随机推荐

  1. xhr post请求

    1. post提交的时候要设置post请求头,可以使用setRequestHeader(单独指定请求的某个http头) 2.通常在web开发中,使用表单提交数据的时候,一般是使用xml的格式进行的.可 ...

  2. h5+js视频播放器控件

    由于h5兼容性问题,很多浏览器对于插入视频播放的支持都大不相同.火狐支持的比较完整,谷歌则支持的不是很好,很多功能都不能实现,这就需要我们去自制一个播放界面,去兼容不同的浏览器. 只插入一个视频时,浏 ...

  3. Python 字符串拼接 sql ,造成 sql 注入例子

    简单的 userinfo 表 字符串拼接 sql import pymysql # 测试环境的数据库连接 conn = pymysql.connect(host='192.168.0.214', po ...

  4. js 常用正则表达式

    1 用户名正则 //用户名正则,4到16位(字母,数字,下划线,减号) var uPattern = /^[a-zA-Z0-9_-]{4,16}$/; //输出 true console.log(uP ...

  5. CSS概念【记录】

    1.CSS语法 2.@规则 3.注释 4.层叠 5.优先级 6.继承 7.值 8.块格式化上下文 9.盒模型 10.层叠上下文 11.可替换元素 12.外边距合并 13.包含块 14.视觉格式化模型 ...

  6. Spring学习之旅(四)Spring工作原理再探

    上篇博文对Spring的工作原理做了个大概的介绍,想看的同学请出门左转.今天详细说几点. (一)Spring IoC容器及其实例化与使用 Spring IoC容器负责Bean的实例化.配置和组装工作有 ...

  7. Android为TV端助力 SharedPreferences 轻量级存储!

    首先在当前进程也就是当前的项目里面进行存储 SharedPreferences.Editor editor = mContext.getSharedPreferences("tvplay&q ...

  8. Android 自定义AlertDialog的实现

    Android默认的AlertDialog太单调,我们可以通过继承原生的Dialog来实现自定义的Dialog. 本文的自定义Dialog和原生的AlertDialog的创建方式类似,通过一个静态Bu ...

  9. Android Studio Git 分支使用实践

    新公司有些项目是用的 Git,以前公司都是 svn,为了练手 Git,我个人 APP 用到了,但是仅简单的 git pull/push 的使用,并未用到 Git 精髓,只有当项目中用到,才会紧迫去全面 ...

  10. Flutter Plugin开发流程

    这篇文章主要介绍了Flutter Plugin开发流程,包括如何利用Android Studio开发以及发布等. 本文主要给大家介绍如何开发Flutter Plugin中Android的部分.有关Fl ...