Brackets Sequence
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 35049   Accepted: 10139   Special Judge

Description

Let us define a regular brackets sequence in the following way:

1. Empty sequence is a regular sequence. 
2. If S is a regular sequence, then (S) and [S] are both regular sequences. 
3. If A and B are regular sequences, then AB is a regular sequence.

For example, all of the following sequences of characters are regular brackets sequences:

(), [], (()), ([]), ()[], ()[()]

And all of the following character sequences are not:

(, [, ), )(, ([)], ([(]

Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.

Input

The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.

Output

Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.

Sample Input

([(]

Sample Output

()[()]

题意:用最少的括号,补全答案。

看完题目第一想法可能是,不停地往读入的字符串中插入括号,但这样很难判断哪些是已有的匹配括号。

所以我们可以用一个二维数组pos记录片段,用dp记录区域间最少的的需要补全的括号。

初始化dp[i][i]为1,然后更新dp时顺便更新pos。
然后按pos更新。 注:这题目不知道什么鬼,最后需要输出一个 '\n',否则wa。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define INF 0x3f3f3f3f
typedef long long ll;
using namespace std;
const int N=;
char s[N];
int dp[N][N],pos[N][N]; bool march(char a,char b)
{
if(a=='('&&b==')'||a=='['&&b==']')
return true;
else
return false;
} void print(int i,int e)
{
if(i>e)
return;
else if(i==e)
{
if(s[i]=='('||s[i]==')')
printf("()");
else if(s[i]=='['||s[i]==']')
printf("[]"); }
else if(pos[i][e]==-)
{
printf("%c",s[i]);
print(i+,e-);
printf("%c",s[e]);
}
else
{
print(i,pos[i][e]);
print(pos[i][e]+,e);
}
} int main()
{
// freopen("input.txt","r",stdin);
gets(s);
// cin>>s;
int len=strlen(s);
memset(dp,,sizeof dp);
memset(pos,,sizeof pos);
for(int i=;i<len;i++)
{
dp[i][i]=;
}
for(int l=;l<len;l++)
{
for(int i=;l+i<len;i++)
{
int e=l+i;
dp[i][e] = 0x7fffffff;
if(march(s[i],s[e]))
{
dp[i][e]=dp[i+][e-];
pos[i][e]=-;
// cout<<"匹配:"<<i<<' '<<e<<' '<<dp[i][e]<<endl;
} for(int j=i;j<e;j++)
{
if(dp[i][e]>dp[i][j]+dp[j+][e])
{
dp[i][e]=dp[i][j]+dp[j+][e];
pos[i][e]=j;
// cout<<i<<' '<<e<<' '<<dp[i][e]<<endl;
}
}
}
}
print(,len-);
printf("\n");
}

poj 1141 Brackets Sequence 区间dp,分块记录的更多相关文章

  1. POJ 1141 Brackets Sequence(区间DP, DP打印路径)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  2. poj 1141 Brackets Sequence (区间dp)

    题目链接:http://poj.org/problem?id=1141 题解:求已知子串最短的括号完备的全序列 代码: #include<iostream> #include<cst ...

  3. poj 1141 Brackets Sequence ( 区间dp+输出方案 )

    http://blog.csdn.net/cc_again/article/details/10169643 http://blog.csdn.net/lijiecsu/article/details ...

  4. 区间DP POJ 1141 Brackets Sequence

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29520   Accepted: 840 ...

  5. POJ 1141 Brackets Sequence (区间DP)

    Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a r ...

  6. POJ 1141 Brackets Sequence(括号匹配二)

    题目链接:http://poj.org/problem?id=1141 题目大意:给你一串字符串,让你补全括号,要求补得括号最少,并输出补全后的结果. 解题思路: 开始想的是利用相邻子区间,即dp[i ...

  7. POJ 2955 Brackets (区间dp入门)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  8. POJ 1141 Brackets Sequence

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29502   Accepted: 840 ...

  9. Poj 2955 brackets(区间dp)

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7795   Accepted: 4136 Descript ...

随机推荐

  1. Spring4.0开始的泛型依赖

    参考资料: http://www.cnblogs.com/solverpeng/p/5687304.html 视频地址:https://edu.51cto.com/course/1956.html 一 ...

  2. [SQL]事务回滚详解及示例

    存储过程中的 SET XACT_ABORT ON 和事务 在存储过程中写SET XACT_ABORT ON 有什么用? SET XACT_ABORT ON是设置事务回滚的! 当为ON时,如果你存储中的 ...

  3. 《深度探索C++对象模型》读书笔记(一)

    前言 今年中下旬就要找工作了,我计划从现在就开始准备一些面试中会问到的基础知识,包括C++.操作系统.计算机网络.算法和数据结构等.C++就先从这本<深度探索C++对象模型>开始.不同于& ...

  4. springboot项目简单启动脚本

    #!/bin/bash function log_info () { DATE=`date "+%Y-%m-%d %H:%M:%S"` USER=$(whoami) echo &q ...

  5. Nginx+Memcache+一致性hash算法 实现页面分布式缓存(转)

    网站响应速度优化包括集群架构中很多方面的瓶颈因素,这里所说的将页面静态化.实现分布式高速缓存就是其中的一个很好的解决方案... 1)先来看看Nginx负载均衡 Nginx负载均衡依赖自带的 ngx_h ...

  6. springboot vue简单整合

    1.vue项目 (1)修改config/index.js (2)执行 npm run build 生成静态文件,在dist目录 2.springboot项目 (1)在src/main/resource ...

  7. 再论 ORM

    Object-Relationl Mapping,它的作用是在关系型数据库和对象之间作一个映射. ORM 对象关系映射,这样说还是懵. 这里比较难理解的是 关系 —— 即Relationl ,虽然看起 ...

  8. endnote将参考文献导入word中

    在endnote中将目标文献选中 然后返回word 将光标放到目标位置 个人网盘,endnoteX7资源 链接:https://pan.baidu.com/s/1lEocicehiPm1Ypkw768 ...

  9. ---rk3288 mipi 整发(适用于新版的kernel 4.4 )

    http://www.pianshen.com/article/7245318143/ 老的Anroid 5.1 下 Linux 3.10 的数据的名字和 处理方式有不少不同 不过rk3128 还在走 ...

  10. hbase概述和安装

    前言 前几天刚学了Hadoop的安装,几乎把Hadoop的雷都踩了一个遍,虽然Hadoop的相关的配置文件以及原理还没有完全完成,但是现在先总结分享一下笔者因为需要所整理的一些关于Hbase的东西. ...