import numpy as np
import operator
import os #KNN算法
def knn(k,testdata,traindata,labels):#(k,测试样本,训练集,分类)
traindatasize=traindata.shape[0]#行数
#测试样本和训练集样本数可能不一样,因此需要将测试集样本数扩展成和训练集一样多
#从行方向扩展 tile(a,(size,1))
dif=np.tile(testdata,(traindatasize,1))-traindata
#计算距离
sqdif=dif**2
sumsqdif=sqdif.sum(axis=1)
distance=sumsqdif**0.5 sortdistance=distance.argsort()#从小到大排列,结果返回元素位置
count={}
for i in range(k):
vote=labels[sortdistance[i]]
#统计每一类列样本的数量
count[vote]=count.get(vote,0)+1
sortcount=sorted(count.items(),key=operator.itemgetter(1),reverse=True)
#取包含样本数量最多的那一类别
return sortcount[0][0] #加载数据,将文件转化为数组形式
def datatoarray(filename):
arr=[]
fh=open(filename)
for i in range(32):
thisline=fh.readline()
for j in range(32):
arr.append(int(thisline[j]))
return arr #获取文件的lable
def get_labels(filename):
label=int(filename.split('_')[0])
return label #建立训练数据
def train_data():
labels=[]
trainlist=os.listdir('traindata/')
num=len(trainlist)
#长度1024(列),每一行存储一个文件
#用一个数组存储所有训练数据,行:文件总数,列:1024
trainarr=np.zeros((num,1024))
for i in range(num):
thisfile=trainlist[i]
labels.append(get_labels(thisfile))
trainarr[i,:]=datatoarray("traindata/"+thisfile)
return trainarr,labels #用测试数据调用KNN算法进行测试
def datatest():
a=[]#准确结果
b=[]#预测结果
traindata,labels=train_data()
testlist=os.listdir('testdata/')
fh=open('result_knn.csv','a')
for test in testlist:
testfile='testdata/'+test
testdata=datatoarray(testfile)
result=knn(3,testdata,traindata,labels)
#将预测结果存在文本中
fh.write(test+'-----------'+str(result)+'\n')
a.append(int(test.split('_')[0]))
b.append(int(result))
fh.close()
return a,b if __name__=='__main__':
a,b=datatest()
num=0
for i in range(len(a)):
if(a[i]==b[i]):
num+=1
else:
print("预测失误:",a[i],"预测为",b[i])
print("测试样本数为:",len(a))
print("预测成功数为:",num)
print("模型准确率为:",num/len(a))

knn手写识别的更多相关文章

  1. 机器学习实战一:kNN手写识别系统

    实战一:kNN手写识别系统 本文将一步步地构造使用K-近邻分类器的手写识别系统.由于能力有限,这里构造的系统只能识别0-9.需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:32像素*3 ...

  2. opencv实现KNN手写数字的识别

    人工智能是当下很热门的话题,手写识别是一个典型的应用.为了进一步了解这个领域,我阅读了大量的论文,并借助opencv完成了对28x28的数字图片(预处理后的二值图像)的识别任务. 预处理一张图片: 首 ...

  3. 机器学习实战kNN之手写识别

    kNN算法算是机器学习入门级绝佳的素材.书上是这样诠释的:“存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都有标签,即我们知道样本集中每一条数据与所属分类的对应关系.输入没有标签的新数据 ...

  4. python 实现 KNN 分类器——手写识别

    1 算法概述 1.1 优劣 优点:进度高,对异常值不敏感,无数据输入假定 缺点:计算复杂度高,空间复杂度高 应用:主要用于文本分类,相似推荐 适用数据范围:数值型和标称型 1.2 算法伪代码 (1)计 ...

  5. k最邻近算法——使用kNN进行手写识别

    上篇文章中提到了使用pillow对手写文字进行预处理,本文介绍如何使用kNN算法对文字进行识别. 基本概念 k最邻近算法(k-Nearest Neighbor, KNN),是机器学习分类算法中最简单的 ...

  6. kNN算法实例(约会对象喜好预测和手写识别)

    import numpy as np import operator import random import os def file2matrix(filePath):#从文本中提取特征矩阵和标签 ...

  7. 【Win 10 应用开发】手写识别

    记得前面(忘了是哪天写的,反正是前些天,请用力点击这里观看)老周讲了一个14393新增的控件,可以很轻松地结合InkCanvas来完成涂鸦.其实,InkCanvas除了涂鸦外,另一个大用途是墨迹识别, ...

  8. JS / Egret 单笔手写识别、手势识别

    UnistrokeRecognizer 单笔手写识别.手势识别 UnistrokeRecognizer : https://github.com/RichLiu1023/UnistrokeRecogn ...

  9. (手写识别) Zinnia库及其实现方法研究

    Zinnia库及其实现方法研究 (转) zinnia是一个开源的手写识别库.采用C++实现.具有手写识别,学习以及文字模型数据制作转换等功能. 项目地址 [http://zinnia.sourcefo ...

随机推荐

  1. 工欲善其事必先利其器系列之:更换Visual Studio代码风格.

    前言:如果你厌倦了默认的VS的背景颜色,可以在studiostyl下载.vssettinggs文件,将其导入VS中,黑色的风格还是蛮不错的,如果用的12的话就没这个必要了我觉得. 从网站下载后会得到扩 ...

  2. WebForm Response和Request以及Cookie

    Session:每一台电脑访问服务器,都会是独立的一套session,key值都一样,但是内容都是不一样的 以上所有内容,都跟cookies一样, 内置对象:用于页面之间的数据交互 为什么要使用这么内 ...

  3. java-appium-527 WebDriver协议&针对控件的操作

    1.WebDriver协议 https://www.w3.org/TR/webdriver/#list-of-endpoints 1.1查看当前所有的session情况 http://127.0.0. ...

  4. shell 2变量

    shell变量 定义变量 变量名命名规则: 1.命名只能使用英文字母.数字和下划线,首个字符不能以数字开头 2.中间不能有空格,可以使用下划线 3.不能使用标点符号 4.不能使用sh中的关键字,可用h ...

  5. golang web框架 beego 学习 (四) 连接mysql

    1 DB参数配置在app.conf appname = gowebProject httpport = runmode = dev [db] host= localhost port= databas ...

  6. Microsoft Dynamics CRM 2011 安装完全教程

    作者:卞功鑫,转载请保留.http://www.cnblogs.com/BinBinGo/p/4302612.html 环境介绍 WINDOWS 2008 R2 Datacenter Microsof ...

  7. 关于博主noble_

    大家好啊,我是博主noble_,大家叫我noble就行了.我身处上海某初高中连体的市重点,校内OI比较弱. 个人常用OJ是洛谷,BZOJ,POJ,HDU,UVA.名字都叫noble_. 目前noble ...

  8. 【Unix网络编程】chapter2传输层:TCP,UDP和SCTP

    2.1 概述 TCP:复杂,可靠的字节流协议 UDP:简单的,不可靠的数据包协议 SCTP:流控制传输协议 2.2 总图 2.3 用户数据报协议2.4 传输控制协议2.5 流控制传输协议(SCTP)2 ...

  9. 测试运行kafka的时候缺少包的错误

    把kafka安装好了,在开启Kafka producer生产者,消费者的时候报这个错误 解决方法: 下载slf4j-1.7.6.ziphttp://www.slf4j.org/dist/slf4j-1 ...

  10. GSO/TSO/GRO等对VirtIO虚机的网络性能影响分析(by quqi99)

    作者:张华  发表于:2016-04-05版权声明:可以任意转载,转载时请务必以超链接形式标明文章原始出处和作者信息及本版权声明 ( http://blog.csdn.net/quqi99 ) IP层 ...