POJ 3463 最(次)短路条数
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 9497 | Accepted: 3340 |
Description
Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.
Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.
There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.
Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.
M lines, each with three integers A, B and L, separated by single spaces, with 1 ≤ A, B ≤ N, A ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.
The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.
One line with two integers S and F, separated by a single space, with 1 ≤ S, F ≤ N and S ≠ F: the starting city and the final city of the route.
There will be at least one route from S to F.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.
Sample Input
2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1
Sample Output
3
2
Hint
The first test case above corresponds to the picture in the problem description.
题意:旅行团每天固定的从S地出发到达T地,为了省油要求尽量走最短路径或比最短路径长1单位距离的路径,求满足条件的路径条数
算法:最短路和次短路。Dijkstra算法。采用邻接表建图。
dis[x][2]:dis[x][0]表示起点到x的最短路、dis[x][1]表示起点到x的次短路;
arr[x][2]:arr[x][0]表示起点到x的最短路条数、arr[x][1]表示起点到x的次短路的条数;
vis[x][2]对应于x和0、1功能为记录该点是否被访问!
那么如何更新最小和次小路呢?显然我们容易想到下面的方法:
1.if(x<最小)更新最小,次小;
2.else if(x==最小)更新方法数;
3.else if(x<次小)更新次小;
4.else if(x==次小)更新方法数;
最后说说dijkstra的循环部分、这也是本题的关键。为什么我们要循环2*nnum-1次?显然这道题中我们每一条边都需要考虑、这不是在求最短的一条,说白了是让你求出所有的可能组合,那么我们势必对每一种情况都需要遍历一次,虽然中间有重复。最短路里已知[start][0]已被标记为访问过,那么就只有nnum-1次遍历了,而次短路我们则需要遍历nnum次,这样两者加起来就为2*nnum-1次。这与我们平时使用优先队列+heap是一样的。只是更加细化了而已。
代码:
//#include<bits/stdc++.h>
//#include<regex>
#include <vector>
#include <cstdio>
#include "cstring"
#include <algorithm>
#define db double
#define ll long long
#define vec vector<ll>
#define Mt vector<vec>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define MP make_pair
#define PB push_back
#define fr(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int N=1e6+;
const int mod=1e9+;
const int MOD=mod-;
const db eps=1e-;
//const db pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
int h[N],d[N][],c[N][];
bool vis[N][];
struct P
{
int v,w,nx;
P(int x,int y,int z):v(x),w(y),nx(z){};
P(){};
};
vector<P> e;
int cnt,n,m,t;
void add(int x,int y,int z)
{ e.push_back(P(y,z,h[x]));
h[x]=cnt++;
}
void dij(int s,int g)
{
memset(vis,, sizeof(vis));
memset(c,, sizeof(c));
for(int i=;i<=n;i++){
d[i][]=inf;
d[i][]=inf;
}
int k,ok;
d[s][]=,c[s][]=; for(int ii=;ii<*n;ii++)
{
int ans=inf;
for(int i=;i<=n;i++){
if(!vis[i][]&&d[i][]<ans){//取最近的点
k=i;
ok=;
ans=d[i][];
}
else if(!vis[i][]&&d[i][]<ans){
k=i;
ok=;
ans=d[i][];
}
}
if(ans==inf) break;
vis[k][ok]=;
for(int j=h[k];j!=-;j=e[j].nx){
int v=e[j].v,w=e[j].w;
if(d[v][]>ans+w){//更新最短路
d[v][]=d[v][];
c[v][]=c[v][];
d[v][]=ans+w;
c[v][]=c[k][ok];
}
else if(d[v][]==ans+w){//更新最短路条数
c[v][]+=c[k][ok];
}
else if(d[v][]>ans+w)//更新次短路
d[v][]=ans+w,c[v][]=c[k][ok];
else if(d[v][]==ans+w)//次短路条数
c[v][]+=c[k][ok];
}
}
if(d[g][]==d[g][]+)
c[g][]+=c[g][]; pi(c[g][]); }
int main()
{
ci(t);
while(t--)
{
ci(n),ci(m);
e.clear();
cnt=;
memset(h,-, sizeof(h));
for(int i=;i<m;i++){
int x,y,z;
ci(x),ci(y),ci(z);
add(x,y,z);
}
int s,g;
ci(s),ci(g);
dij(s,g);
}
return ; }
POJ 3463 最(次)短路条数的更多相关文章
- hdu3191+hdu1688(求最短路和次短路条数,模板)
hdu3191题意:求出次短路的长度和条数 #include<iostream> #include<cstdio> #include<cstring> #inclu ...
- poj 3463 Sightseeing(次短路+条数统计)
/* 对dij的再一次理解 每个点依旧永久标记 只不过这里多搞一维 0 1 表示最短路还是次短路 然后更新次数相当于原来的两倍 更新的时候搞一下就好了 */ #include<iostream& ...
- POJ 3463 Sightseeing (次短路经数)
Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissions:10005 Accepted: 3523 Descr ...
- POJ - 3463 Sightseeing 最短路计数+次短路计数
F - Sightseeing 传送门: POJ - 3463 分析 一句话题意:给你一个有向图,可能有重边,让你求从s到t最短路的条数,如果次短路的长度比最短路的长度多1,那么在加上次短路的条数. ...
- codeforces257 div2 D最短路条数
题意: 给一个无向图,总共有 n个点,m+k条边,给定点所连的k条边可以选择删除 问最多删除多少条可以保持该定点到其他点的最短路不变 题解: 从定点出发做单元最短路 首先如果定点到某个点的最短路小于 ...
- 紧急救援 L2-001 dijkstra 打印路径 最短路条数 权值
较为复杂的dijkstra 包含路径打印 最小路的条数 最小路径的情况下取最大权值 v0要是标记就会出错...? 有权值的题目 不能设置mp[i][i]为0 否则会无限加权 这题很有参考价值 ...
- hdu 3191 How Many Paths Are There (次短路径数)
How Many Paths Are There Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java ...
- 关于 最短路条数 和 边不可重复最短路条数问题 /hdu3599(边不可重复最短路)
原先一直在做一道省赛题,由于题意错误理解成球最短路条数,误打误撞敲了最短路条数,又发现hdu3599(多校)求边不可重复最短路条数.下面说说俩种问题解法: 最短路条数: 求一个图一共一几条最短路径,思 ...
- poj 3463 最短路与次短路的方案数求解
Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8968 Accepted: 3139 Descr ...
随机推荐
- NO.1-M2
一,CSS盒模型 1,当父盒子包裹子盒子,且上边线重合时,给子盒子添加margin-top时,子盒子与父盒子的上边线并不能分开,,而是导致,两个盒子同时下来,而是导致,两个盒子同时下来 使两条上边 ...
- 扩展Python模块系列(二)----一个简单的例子
本节使用一个简单的例子引出Python C/C++ API的详细使用方法.针对的是CPython的解释器. 目标:创建一个Python内建模块test,提供一个功能函数distance, 计算空间中两 ...
- Markdown简明教程
一.Markdown到底是什么? Markdown是一种轻量级的标记语言,它使用很少量的符号控制文字的样式和排版,简单易学,使你更专注于文字. 二.Markdown的使用 接下来让我们一起来看下Mar ...
- python进阶(8):常用模块2+异常处理
前段时间讲了很多的模块应为当时面向对象没有讲有几个没有说今天补上,再说一个异常处理. 一.hashlib模块 Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等. 摘要算法又称哈 ...
- butterknife的8.5.1版本问题
使用7.0.1版本没有问题compile 'com.jakewharton:butterknife:7.0.1'使用8.5.0版本时候,必须配合下面的compiler插件一起使用,否则会出现点击事件不 ...
- java多线程系列(八)---CountDownLatch和CyclicBarrie
CountDownLatch 前言:如有不正确的地方,还望指正. 目录 认识cpu.核心与线程 java多线程系列(一)之java多线程技能 java多线程系列(二)之对象变量的并发访问 java多线 ...
- Java中几种常量池的区分
转载自:https://tangxman.github.io/2015/07/27/the-difference-of-java-string-pool/ 在java的内存分配中,经常听到很多关于常量 ...
- JavaScript模块化 --- Commonjs、AMD、CMD、es6 modules
随着前端js代码复杂度的提高,JavaScript模块化这个概念便被提出来,前端社区也不断地实现前端模块化,直到es6对其进行了规范,下面就介绍JavaScript模块化. 这篇文章还是希望能给大家一 ...
- Struts2学习笔记(二)——配置详解
1.Struts2配置文件加载顺序: default.properties(默认常量配置) struts-default.xml(默认配置文件,主要配置bean和拦截器) struts-plugin. ...
- 【Ubuntu 16】网络配置文件
之前使用图形化NetworkManager配置静态IP,但在/etc/network/interfaces中找不到静态IP的配置信息,让人不解. 今天在网上看到网友的一则文章,知道了在/etc/Net ...