4的倍数不行,之间的数都可以到4的倍数,而6的倍数不能到4的倍数

#include <iostream>
#include <cstdio>
#include <queue>
#include <algorithm>
#include <cmath>
#include <cstring>
#define inf 2147483647
#define N 1000010
#define p(a) putchar(a)
#define For(i,a,b) for(int i=a;i<=b;++i)
//by war
//2019.8.9
using namespace std;
int T,n;
void in(int &x){
int y=;char c=getchar();x=;
while(c<''||c>''){if(c=='-')y=-;c=getchar();}
while(c<=''&&c>=''){ x=(x<<)+(x<<)+c-'';c=getchar();}
x*=y;
}
void o(int x){
if(x<){p('-');x=-x;}
if(x>)o(x/);
p(x%+'');
} signed main(){
in(T);
while(T--){
in(n);
if(n%==)
puts("Roy wins!");
else
puts("October wins!");
}
return ;
}

P4860 Roy&October之取石子II的更多相关文章

  1. 洛谷P4860 Roy&October之取石子II 题解 博弈论

    题目链接:https://www.luogu.org/problem/P4860 和<P4018 Roy&October之取石子>一样的推导思路,去找循环节. 可以发现:只要不能被 ...

  2. [luogu4860][Roy&October之取石子II]

    题目链接 思路 这个题和上个题类似,仔细推一下就知道这个题是判断是否是4的倍数 代码 #include<cstdio> #include<iostream> #define f ...

  3. 洛谷 P4018 Roy&October之取石子

    洛谷 P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质 ...

  4. 洛谷——P4018 Roy&October之取石子

    P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取p^kpk个(p为质数,k为自 ...

  5. 洛谷 Roy&October之取石子

    题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取pk 个(p为质数,k为自然数,且pk小于等于当前剩余石子数),谁取走最后一个石子 ...

  6. P4018 Roy&October之取石子

    题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质数,k为自然数,且 p^kpk 小于等于当前剩余石子数), ...

  7. 洛谷P4018 Roy&October之取石子

    题目背景 \(Roy\)和\(October\)两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有\(n\)个石子,两人每次都只能取\(p^k\)个(\(p\)为质数,\(k\)为自然数,且 ...

  8. [luogu4018][Roy&October之取石子]

    题目链接 思路 这个题思路挺巧妙的. 情况一: 首先如果这堆石子的数量是1~5,那么肯定是先手赢.因为先手可以直接拿走这些石子.如果石子数量恰好是6,那么肯定是后手赢.因为先手无论怎样拿也无法直接拿走 ...

  9. luogu P4018 Roy&October之取石子(博弈论)

    题意 题解 如果n是6的倍数,先手必败,否则先手必胜. 因为6*x一定不是pk 所以取得话会变成6*y+a的形式a=1,2,3,4,5: 然后a一定为质数.我们把a取完就又成为了6*x的形式. 又因为 ...

随机推荐

  1. LeetCode 182. Duplicate Emails (查找重复的电子邮箱)

    题目标签: 题目给了我们一个 email 的table,让我们找到重复的 email. 可以建立 Person a, Person b, 找到两个表格中,emai 相等 但是 id 不同的 email ...

  2. Area--->AreaRegistrationContext.MapRoute

    文章引导 MVC路由解析---IgnoreRoute MVC路由解析---MapRoute MVC路由解析---UrlRoutingModule Area的使用 Area--->AreaRegi ...

  3. Python生成Windows可执行exe文件

    环境 python3.6.5 pyinstaller3.5 windows 10 下载地址 python:https://www.python.org/ftp/python/3.6.5/python- ...

  4. LaTeX+TexStudio安装与使用

    (很多杂志期刊接受LaTeX电子版时会提供自己的模板,只要使用他们的模板即可完美地展现在对应的刊物中) 0x00. 优点 丰富易用的数学公式和特殊符号: 容易生成图表编号.引用.交叉引用.目录: 可以 ...

  5. beautifulsoup的使用

    解析库 解析器 使用方法 优势 劣势 Python标准库 BeautifulSoup(markup, "html.parser") Python的内置标准库.执行速度适中 .文档容 ...

  6. SElinux(转)

    转自:http://www.361way.com/rh134-selinux/4653.html RH134小结(四)初识SElinux 2015年8月2日admin发表评论阅读评论   一.SEli ...

  7. SPRING+JPA+Hibernate配置方法

    1.applicationContext.xml <?xml version="1.0" encoding="UTF-8"?> <beans ...

  8. flink流的执行大致流程图

  9. iOS开发系列-Shell脚本编译SDK

    Library静态库Shell脚本 #!/bin/bash #要build的target名 target_Name="IFlyMSC" #编译模式 Release.Debug bu ...

  10. java 多项式

    /****************************************************************************** * Compilation: javac ...