4的倍数不行,之间的数都可以到4的倍数,而6的倍数不能到4的倍数

#include <iostream>
#include <cstdio>
#include <queue>
#include <algorithm>
#include <cmath>
#include <cstring>
#define inf 2147483647
#define N 1000010
#define p(a) putchar(a)
#define For(i,a,b) for(int i=a;i<=b;++i)
//by war
//2019.8.9
using namespace std;
int T,n;
void in(int &x){
int y=;char c=getchar();x=;
while(c<''||c>''){if(c=='-')y=-;c=getchar();}
while(c<=''&&c>=''){ x=(x<<)+(x<<)+c-'';c=getchar();}
x*=y;
}
void o(int x){
if(x<){p('-');x=-x;}
if(x>)o(x/);
p(x%+'');
} signed main(){
in(T);
while(T--){
in(n);
if(n%==)
puts("Roy wins!");
else
puts("October wins!");
}
return ;
}

P4860 Roy&October之取石子II的更多相关文章

  1. 洛谷P4860 Roy&October之取石子II 题解 博弈论

    题目链接:https://www.luogu.org/problem/P4860 和<P4018 Roy&October之取石子>一样的推导思路,去找循环节. 可以发现:只要不能被 ...

  2. [luogu4860][Roy&October之取石子II]

    题目链接 思路 这个题和上个题类似,仔细推一下就知道这个题是判断是否是4的倍数 代码 #include<cstdio> #include<iostream> #define f ...

  3. 洛谷 P4018 Roy&October之取石子

    洛谷 P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质 ...

  4. 洛谷——P4018 Roy&October之取石子

    P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取p^kpk个(p为质数,k为自 ...

  5. 洛谷 Roy&October之取石子

    题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取pk 个(p为质数,k为自然数,且pk小于等于当前剩余石子数),谁取走最后一个石子 ...

  6. P4018 Roy&October之取石子

    题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质数,k为自然数,且 p^kpk 小于等于当前剩余石子数), ...

  7. 洛谷P4018 Roy&October之取石子

    题目背景 \(Roy\)和\(October\)两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有\(n\)个石子,两人每次都只能取\(p^k\)个(\(p\)为质数,\(k\)为自然数,且 ...

  8. [luogu4018][Roy&October之取石子]

    题目链接 思路 这个题思路挺巧妙的. 情况一: 首先如果这堆石子的数量是1~5,那么肯定是先手赢.因为先手可以直接拿走这些石子.如果石子数量恰好是6,那么肯定是后手赢.因为先手无论怎样拿也无法直接拿走 ...

  9. luogu P4018 Roy&October之取石子(博弈论)

    题意 题解 如果n是6的倍数,先手必败,否则先手必胜. 因为6*x一定不是pk 所以取得话会变成6*y+a的形式a=1,2,3,4,5: 然后a一定为质数.我们把a取完就又成为了6*x的形式. 又因为 ...

随机推荐

  1. hdu多校第七场 1006(hdu6651) Final Exam 博弈

    题意: 有n道题,这n道题共m分,要求你至少做出k道才能及格,你可以自由安排复习时间,但是只有某道题复习时间严格大于题目分配的分值时这道题才能够被做出来,求最少的,能够保证及格的复习时间.复习时间和分 ...

  2. LightOJ-1253-Misere Nim-nim博弈

    Alice and Bob are playing game of Misère Nim. Misère Nim is a game playing on k piles of stones, eac ...

  3. JS与Jquery的事件委托机制

    传送:http://www.ituring.com.cn/article/467 概念: 什么是事件委托:通俗的讲,事件就是onclick,onmouseover,onmouseout,等就是事件,委 ...

  4. 使用SDK方式进行微信授权

    1.在pom.xml中添加依赖 <dependency> <groupId>com.github.binarywang</groupId> <artifact ...

  5. 基于SpringBoot的Swagger2快速入门

    1. Springboot 集成 Swagger2 1.1 导入Swagger2 依赖 <!-- https://mvnrepository.com/artifact/io.springfox/ ...

  6. Python骚操作(一)

    1. 交换变量值 2. 将列表中所有元素组合成字符串 3. 查找列表中频率最高的值 4. 检查连个字符串是不是由相同字母不同顺序组成 5. 反转字符串 6. 反转列表 7. 转置二维数组 8. 链式比 ...

  7. numpy基本函数

    在学习python的时候常常需要numpy这个库,每次都是用一个查一个,这个,终于见到一个完整的总结了http://blog.csdn.net/blog_empire/article/details/ ...

  8. QTP,自己主动化測试学习笔记,六月九号

    測试自己主动化实现的两个难点设计--功能分解 实现--对象的识别 測试自己主动化实现的两个难点-功能分解 清晰画出业务流程图 依据业务流程分解业务功能.能够被复用的功能也要被分解出来. 依照路径覆盖的 ...

  9. docker使用gitlab持续集成(1)

    修改ssh连接端口vi /etc/ssh/sshd_config 写docker-compose.yml文件配置gitlab version: '3' services: gitlab: image: ...

  10. Shiro学习笔记1 —— Hello World

    1.创建一个Maven工程加载Shiro的jar包 <!-- junit --> <dependency> <groupId>junit</groupId&g ...