PP: Imaging time-series to improve classification and imputation
From: University of Maryland
encode time series as different types of images.
reformulate features of time series as visual clues.
three representations for encoding time series as images: Gramian angular summation fields/ Gramian angular difference fields and Markov transition fields.
Recently, researchers are trying to build different network structures from time series for visual inspection or designing distance measures.
build a weighted adjacency matrix is extracting transition dynamics from the first order Markov matrix.
time series ---------> topological properties; but it remains unclear how these topological properties relate to the original time series since they have no exact inverse operations.
time series ----> images ----> tailed CNN for classification
Conclusion:
We aim to further apply our time series models in real world regression/imputation and anomaly detection tasks.
PP: Imaging time-series to improve classification and imputation的更多相关文章
- PP: Multi-Horizon Time Series Forecasting with Temporal Attention Learning
Problem: multi-horizon probabilistic forecasting tasks; Propose an end-to-end framework for multi-ho ...
- PP: Reconstructing time series into a complex network to assess the evolution dynamics of the correlations among energy prices
Purpose detect the dynamics in time series of their correlation Methodology 1. calculate correlation ...
- A Novel Multi-label Classification Based on PCA and ML-KNN
ICIC Express Letters ICIC International ⓒ2010 ISSN 1881-803X Volume4, Number5, O ...
- CRC 详解
http://www.barrgroup.com/Embedded-Systems/How-To/Additive-Checksums CRC Series, Part 1: Additive Che ...
- 单因素特征选择--Univariate Feature Selection
An example showing univariate feature selection. Noisy (non informative) features are added to the i ...
- Handling Class Imbalance with R and Caret - An Introduction
When faced with classification tasks in the real world, it can be challenging to deal with an outcom ...
- 信用评分卡Credit Scorecards (1-7)
欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章 python风控评分卡建模和风控常识 https://study.163.com/course/introductio ...
- how to generate an analog output from a in-built pwm of Atmega 32AVR microcontrloller?
how to generate an analog output from a in-built pwm of Atmega 32AVR microcontrloller? you need a re ...
- PWM DAC Low Pass Filtering
[TI博客大赛][原创]LM3S811之基于PWM的DAC http://bbs.ednchina.com/BLOG_ARTICLE_3005301.HTM http://www.fpga4fun.c ...
随机推荐
- 大厂面试必问题!HashMap 怎样解决hash桶碰撞?
HashMap冲突解决方法比较考验一个开发者解决问题的能力.下文给出HashMap冲突的解决方法以及原理分析,无论是在面试问答或者实际使用中,应该都会有所帮助.在Java编程语言中,最基本的结构就是两 ...
- 如何阻止a标签跳转
<a href="www.baidu.com">百度</a> 上面为我们的a标签,要想阻止它进行跳转我们该怎么办呢? 当然我们有以下的几种办法_______ ...
- win2012 挂载硬盘即增加新硬盘方法
这篇文章主要介绍了win2012 挂载硬盘即增加新硬盘方法,需要的朋友可以参考下 点击左下角的服务器管理图标 点击右上角的“工具”,再选择“计算机管理” 再点击“磁盘管理” 在磁盘1的按钮处单击右键, ...
- gitlab被屏蔽问题
There was an error with the reCAPTCHA. Please solve the reCAPTCHA again. 解决办法 俗话说:哪里有碍事的墙,哪里就使劲推好了 h ...
- P1196 [NOI2002]银河英雄传说 【带权并查集】
思路 用sum记录每个舰队的战舰数量, tohead 记录当前舰离舰首的距离,那么求任意两舰之间有多少舰显然就是 abs( tohead[i] - tohead[j] ) - 1: CODE #inc ...
- LeetCode 面试题 02.03. 删除中间节点
题目链接:https://leetcode-cn.com/problems/delete-middle-node-lcci/ 实现一种算法,删除单向链表中间的某个节点(除了第一个和最后一个节点,不一定 ...
- 两行配置完全解放gradle编译慢问题
Android Studio编译经常出现gradle编译缓慢甚至超时问题,抛开电脑硬件配置不说,主要问题还是国内网络环境的因素影响,可以通过修改项目根目录下的build.gradle文件如下: bui ...
- 题解【CF1311F Moving Points】
\[ \texttt{Preface} \] 赛时,把 " 任意时刻 " 理解成 " 整数时刻 " 了,看起来一脸不可做的亚子,还各种推式子. 话说我为什么觉得 ...
- RocketMQ幂等性问题
什么是幂等性: 在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同. 当出现消费者对某条消息重复消费的情况时,重复消费的结果与消费一次的结果是相同的,并且多次消费并未对业务系 ...
- ECMAScript 6基础
ECMAScript 和 JavaScript 是什么关系? 1996 年 11 月,JavaScript 的创造者 Netscape 公司,希望JavaScript能够成为国际标准,将其提交给标准化 ...