自定义View系列教程03--onLayout源码详尽分析
Android多分辨率适配框架(1)— 核心基础
Android多分辨率适配框架(2)— 原理剖析
Android多分辨率适配框架(3)— 使用指南
自定义View系列教程00–推翻自己和过往,重学自定义View
自定义View系列教程01–常用工具介绍
自定义View系列教程02–onMeasure源码详尽分析
自定义View系列教程03–onLayout源码详尽分析
自定义View系列教程04–Draw源码分析及其实践
自定义View系列教程05–示例分析
自定义View系列教程06–详解View的Touch事件处理
自定义View系列教程07–详解ViewGroup分发Touch事件
自定义View系列教程08–滑动冲突的产生及其处理
PS:如果觉得文章太长,那就直接看视频吧
在经过measure阶段以后,系统确定了View的测量大小,接下来就进入到layout的过程。
在该过程中会确定视图的显示位置,即子View在其父控件中的位置。
嗯哼,我们直接扒开源码从View的layout( )开始入手。
//l, t, r, b分别表示子View相对于父View的左、上、右、下的坐标
public void layout(int l, int t, int r, int b) {
if ((mPrivateFlags3 & PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT) != 0) {
onMeasure(mOldWidthMeasureSpec, mOldHeightMeasureSpec);
mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
}
int oldL = mLeft;
int oldT = mTop;
int oldB = mBottom;
int oldR = mRight;
boolean changed = isLayoutModeOptical(mParent) ?
setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b);
if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {
onLayout(changed, l, t, r, b);
mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED;
ListenerInfo li = mListenerInfo;
if (li != null && li.mOnLayoutChangeListeners != null) {
ArrayList<OnLayoutChangeListener> listenersCopy =
(ArrayList<OnLayoutChangeListener>)li.mOnLayoutChangeListeners.clone();
int numListeners = listenersCopy.size();
for (int i = 0; i < numListeners; ++i) {
listenersCopy.get(i).onLayoutChange(this,l,t,r,b,oldL,oldT,oldR,oldB);
}
}
}
mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;
mPrivateFlags3 |= PFLAG3_IS_LAID_OUT;
}
在该方法中的主要实现
1 确定该View在其父View中的位置,请参见代码第13-14行。
在该处调用setFrame()方法,在该方法中把l,t, r, b分别与之前的mLeft,mTop,mRight,mBottom一一作比较,假若其中任意一个值发生了变化,那么就判定该View的位置发生了变化
2 若View的位置发生了变化则调用onLayout()方法,请参见代码第17行
嗯哼,我们就顺着这个思路去看看onLayout()的源码
protected void onLayout(boolean changed, int left, int top, int right, int bottom) {
}
额,View的onLayout()方法竟然是一个空方法!这是为啥呢?
先瞅瞅官方文档对该方法的介绍:
Called from layout when this view should assign a size and position to each of its children.
噢,原来文档中说了:在layout方法中调用该onLayout()用于指定子View的大小和位置。
谁才有子View呢?用你的小脑袋瓜想想。
哇哈,当然是ViewGroup!
这也就是说:ViewGroup会调用onLayout()决定子View的显示位置。
好吧,既然如此就去看ViewGroup中的onLayout()方法是怎么实现的;嗯哼,接着看源码
protected abstract void onLayout(boolean changed,int l, int t, int r, int b);
额,ViewGroup的onLayout()竟然是一个抽象方法!这就意味着啥呢?
这就是说ViewGroup的子类都必须重写这个方法,实现自己的逻辑。比如:FrameLayou,LinearLayout,RelativeLayout等等布局都需要重写这个方法,在该方法内依据各自的布局规则确定子View的位置。
在此以LinearLayout为例,看看ViewGroup对于onLayout()方法的实现。
protected void onLayout(boolean changed, int l, int t, int r, int b) {
if (mOrientation == VERTICAL) {
layoutVertical(l, t, r, b);
} else {
layoutHorizontal(l, t, r, b);
}
}
在LinearLayout的onLayout()方法中分别处理了水平线性布局和垂直线性布局。在此,就选择layoutVertical()继续往下看。
void layoutVertical(int left, int top, int right, int bottom) {
final int paddingLeft = mPaddingLeft;
int childTop;
int childLeft;
final int width = right - left;
int childRight = width - mPaddingRight;
int childSpace = width - paddingLeft - mPaddingRight;
final int count = getVirtualChildCount();
final int majorGravity = mGravity & Gravity.VERTICAL_GRAVITY_MASK;
final int minorGravity = mGravity & Gravity.RELATIVE_HORIZONTAL_GRAVITY_MASK;
switch (majorGravity) {
case Gravity.BOTTOM:
childTop = mPaddingTop + bottom - top - mTotalLength;
break;
case Gravity.CENTER_VERTICAL:
childTop =mPaddingTop+(bottom-top-mTotalLength) / 2;
break;
case Gravity.TOP:
default:
childTop = mPaddingTop;
break;
}
for (int i = 0; i < count; i++) {
final View child = getVirtualChildAt(i);
if (child == null) {
childTop += measureNullChild(i);
} else if (child.getVisibility() != GONE) {
final int childWidth = child.getMeasuredWidth();
final int childHeight = child.getMeasuredHeight();
final LinearLayout.LayoutParams lp =
(LinearLayout.LayoutParams) child.getLayoutParams();
int gravity = lp.gravity;
if (gravity < 0) {
gravity = minorGravity;
}
final int layoutDirection = getLayoutDirection();
final int absoluteGravity = Gravity.getAbsoluteGravity(gravity, layoutDirection);
switch (absoluteGravity & Gravity.HORIZONTAL_GRAVITY_MASK) {
case Gravity.CENTER_HORIZONTAL:
childLeft = paddingLeft + ((childSpace - childWidth) / 2)
+ lp.leftMargin - lp.rightMargin;
break;
case Gravity.RIGHT:
childLeft = childRight - childWidth - lp.rightMargin;
break;
case Gravity.LEFT:
default:
childLeft = paddingLeft + lp.leftMargin;
break;
}
if (hasDividerBeforeChildAt(i)) {
childTop += mDividerHeight;
}
childTop += lp.topMargin;
setChildFrame(child,childLeft,childTop+ getLocationOffset(child),
childWidth, childHeight);
childTop += childHeight + lp.bottomMargin + getNextLocationOffset(child);
i += getChildrenSkipCount(child, i);
}
}
}
这里的逻辑不是特别简单,我们看几个重要的步骤。
第一步:
计算child可使用空间的大小,请参见代码第8行
第二步:
获取子View的个数,请参见代码第10行
第三步:
计算childTop从而确定子View的开始布局位置,请参见代码第12-28行
第四步:
确定每个子View的位置,请参见代码第30-74行
这一步是最关键的步骤,我们瞅瞅它的主要操作
1 得到子View测量后的宽和高,请参见代码第35-36行.
这里获取到的childWidth和childHeight就是在measure阶段所确立的宽和高
2 得到子View的LayoutParams,请参见代码第38-39行.
3 依据子View的LayoutParams确定子View的位置,请参见代码第41-69行.
我们可以发现在setChildFrame()中又调用了View的layout()方法来确定子View的位置。
到这我们就可以理清楚思路了:
ViewGroup首先调用了layout()确定了自己本身在其父View中的位置,然后调用onLayout()确定每个子View的位置,每个子View又会调用View的layout()方法来确定自己在ViewGroup的位置。
概况地讲:
View的layout()方法用于View确定自己本身在其父View的位置
ViewGroup的onLayout()方法用于确定子View的位置
为了更好的理解,在此用一个简单的示例模拟ViewGroup的onLayout()过程
首先我们自定义一个ViewGroup
package com.cc.testlayout;
import android.content.Context;
import android.graphics.Canvas;
import android.util.AttributeSet;
import android.view.View;
import android.view.ViewGroup;
public class ViewGroupSubClass extends ViewGroup{
public ViewGroupSubClass(Context context, AttributeSet attrs) {
super(context, attrs);
}
@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
super.onMeasure(widthMeasureSpec, heightMeasureSpec);
int childCount=getChildCount();
if(childCount>0){
View child=getChildAt(0);
measureChild(child,widthMeasureSpec,heightMeasureSpec);
}
}
@Override
protected void onLayout(boolean changed, int l, int t, int r, int b) {
int childCount=getChildCount();
if(childCount>0){
View child=getChildAt(0);
int measuredWidth=child.getMeasuredWidth();
int measuredHeight=child.getMeasuredHeight();
child.layout(0,0,measuredWidth,measuredHeight);
}
}
@Override
protected void onDraw(Canvas canvas) {
super.onDraw(canvas);
}
}
主要步骤如下:
第一步:
在onMeasure()中测量子View
第二步:
在onLayout()中确定子View的位置
定义好ViewGroup之后,将其放入布局文件中
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="center"
android:background="#A5FD01"
tools:context="com.cc.testlayout.MainActivity">
<com.cc.testlayout.ViewGroupSubClass
android:layout_width="wrap_content"
android:layout_height="wrap_content">
<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/j" />
</com.cc.testlayout.ViewGroupSubClass>
</RelativeLayout>
代码有了,布局文件也写了,运行一下瞅瞅效果。
嗯哼,看到了吧,我把一个ImageView放入自定义ViewGroup中展示了我女朋友的照片。
至此,我们已经看完了measure和layout这两个过程,对于一些问题我们做一个小的总结
1 获取View的测量大小measuredWidth和measuredHeight的时机。
在某些复杂或者极端的情况下系统会多次执行measure过程,所以在onMeasure()中去获取View的测量大小得到的是一个不准确的值。为了避免该情况,最好在onMeasure()的下一阶段即onLayout()中去获取。
2 getMeasuredWidth()和getWidth()的区别
在绝大多数情况下这两者返回的值都是相同的,但是结果相同并不说明它们是同一个东西。
首先,它们的获取时机是不同的。
在measure()过程结束后就可以调用getMeasuredWidth()方法获取到View的测量大小,而getWidth()方法要在layout()过程结束后才能被调用从而获取View的实际大小。
其次,它们返回值的计算方式不同。
getMeasuredWidth()方法中的返回值是通过setMeasuredDimension()方法得到的,这点我们之前已经分析过,在此不再赘述;而getWidth()方法中的返回值是通过View的右坐标减去其左坐标(right-left)计算出来的。
3 刚才说到了关于View的坐标,在这就不得不提一下:
view.getLeft(),view.getRight(),view.getBottom(),view.getTop();
这四个方法用于获取子View相对于父View的位置。
但是请注意:
getLeft( )表示子View的左边距离父View的左边的距离
getRight( )表示子View的右边距离父View的左边的距离
getTop( )表示子View的上边距离父View的上边的距离
getBottom( )表示子View的下边距离父View的上边的距离
在此,画一个示例图作为参考
4 直接继承自ViewGroup可能带来的复杂处理。
刚通过一个例子简单模拟了ViewGroup的onLayout()过程;其实,说简单已经算是含蓄的了;如果要粗暴地说那就是简单得令人发指。因为项目开发中实际的情况可能远比这个复杂;比如,在ViewGroup中包含了多个View,每个View都设置了padding和margin,除此之外还可能包含各种嵌套。在这种情况下,我们在onMeasure()和onLayout()中都要花费大量的精力来处理这些问题。所以在一般情况下,我们可以选择继承自LinearLayout,RelativeLayout等系统已有的布局从而简化这两部分的处理。
who is the next one? ——> draw
PS:如果觉得文章太长,那就直接看视频吧
自定义View系列教程03--onLayout源码详尽分析的更多相关文章
- 自定义View系列教程04--Draw源码分析及其实践
深入探讨Android异步精髓Handler 站在源码的肩膀上全解Scroller工作机制 Android多分辨率适配框架(1)- 核心基础 Android多分辨率适配框架(2)- 原理剖析 Andr ...
- 自定义View系列教程02--onMeasure源码详尽分析
深入探讨Android异步精髓Handler 站在源码的肩膀上全解Scroller工作机制 Android多分辨率适配框架(1)- 核心基础 Android多分辨率适配框架(2)- 原理剖析 Andr ...
- 自定义View系列教程01--常用工具介绍
站在源码的肩膀上全解Scroller工作机制 Android多分辨率适配框架(1)- 核心基础 Android多分辨率适配框架(2)- 原理剖析 Android多分辨率适配框架(3)- 使用指南 自定 ...
- 自定义View系列教程08--滑动冲突的产生及其处理
深入探讨Android异步精髓Handler 站在源码的肩膀上全解Scroller工作机制 Android多分辨率适配框架(1)- 核心基础 Android多分辨率适配框架(2)- 原理剖析 Andr ...
- 自定义View系列教程07--详解ViewGroup分发Touch事件
深入探讨Android异步精髓Handler 站在源码的肩膀上全解Scroller工作机制 Android多分辨率适配框架(1)- 核心基础 Android多分辨率适配框架(2)- 原理剖析 Andr ...
- 自定义View系列教程06--详解View的Touch事件处理
深入探讨Android异步精髓Handler 站在源码的肩膀上全解Scroller工作机制 Android多分辨率适配框架(1)- 核心基础 Android多分辨率适配框架(2)- 原理剖析 Andr ...
- 自定义View系列教程05--示例分析
站在源码的肩膀上全解Scroller工作机制 Android多分辨率适配框架(1)- 核心基础 Android多分辨率适配框架(2)- 原理剖析 Android多分辨率适配框架(3)- 使用指南 自定 ...
- 框架源码系列六:Spring源码学习之Spring IOC源码学习
Spring 源码学习过程: 一.搞明白IOC能做什么,是怎么做的 1. 搞明白IOC能做什么? IOC是用为用户创建.管理实例对象的.用户需要实例对象时只需要向IOC容器获取就行了,不用自己去创建 ...
- 老生常谈系列之Aop--Spring Aop源码解析(二)
老生常谈系列之Aop--Spring Aop源码解析(二) 前言 上一篇文章老生常谈系列之Aop--Spring Aop源码解析(一)已经介绍完Spring Aop获取advice切面增强方法的逻辑, ...
随机推荐
- Spring线程安全的实现机制--ThreadLocal
转载: http://blog.csdn.net/lufeng20/article/details/24314381
- python中str的常用方法汇总(1)
a = 'strABC' # Strabc : 首字母大写,其他全部小写 b = a.capitalize() print(b) # STRABC : 全部大写 c = a.upper() print ...
- 各NoSQL数据库管理系统与模型比较
提供:ZStack云计算 内容简介 NoSQL数据库的存在意义在于提供传统关系数据库管理系统所不具备的特定功能.无论是负责承载简单的键-值对存储以实现短期缓存,抑或是处理传统数据库及结构化查询语言(简 ...
- input输入框校验
1.只能输入数字,当输入不符字符删除,光标位置不变 //只能输入数字 function onlyNumTrue(obj){ var reg = /[^\d]/g; var pos = obj.sele ...
- 洛谷P1072 [NOIP2009] Hankson 的趣味题
P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...
- AspNet 常有功能函数1.0
1.net 获取客户端ip方法(此方法不是很准确) public static string GetIP() { string str; if (!string.IsNullOrEmpty(HttpC ...
- C# Socket流数据大小端读写封装
网络数据是大端模式,而c#中的数据小端结构,那么在读写网络数据的时候需要进行转换.c#类库IPAddress已经封装了大小端的转换. 封装代码如下: using System.IO; using ...
- 【JZOJ5060】【GDOI2017第二轮模拟day1】公路建设 线段树+最小生成树
题面 在Byteland一共有n 个城市,编号依次为1 到n,它们之间计划修建m条双向道路,其中修建第i 条道路的费用为ci. Byteasar作为Byteland 公路建设项目的总工程师,他决定选定 ...
- 全面系统Python3入门+进阶课程
全面系统Python3入门+进阶课程 整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频的感受,单论单个知识点课程本身没问题,大家看的时候 ...
- 2019-10-18-dotnet-修复找不到-System.ServiceProcess-定义
title author date CreateTime categories dotnet 修复找不到 System.ServiceProcess 定义 lindexi 2019-10-18 21: ...