[AGC025D]Choosing Points

题目大意:

输⼊\(n(n\le300),d_1,d_2\),你要找到\(n^2\)个整点\((x,y)\)满⾜\(0\le x,y<2n\)。并且找到的任意两个点距离,既不是\(\sqrt{d_1}\),也不是\(\sqrt{d_2}\)。

思路:

所有距离为\(\sqrt{d_1}\)的点连边,可以得到一个⼆分图。\(d_2\)同理。注意到满足\(a^2+b^2=d\)的\((a,b)\)只有\(\mathcal O(n)\)个,可以得到\(\mathcal O(n^3)\)的二分图染色做法。

源代码:

#include<cmath>
#include<cstdio>
#include<cctype>
#include<vector>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=600;
int n,d1,d2,col[2][N*N];
std::vector<std::pair<int,int>> v[2];
inline int id(const int &x,const int &y) {
return x*N+y;
}
inline bool check(const int &x) {
return 0<=x&&x<n*2;
}
void dfs(const int &x,const int &t) {
const int i=x/N,j=x%N;
for(auto &d:v[t]) {
const int nx=i+d.first,ny=j+d.second;
if(!check(nx)||!check(ny)) continue;
const int y=id(i+d.first,j+d.second);
if(!col[t][y]) {
col[t][y]=col[t][x]==1?2:1;
dfs(y,t);
}
}
}
int main() {
n=getint(),d1=getint(),d2=getint();
for(register int i=0;i<=d1;i++) {
const int j=sqrt(d1-i*i);
if(i*i+j*j!=d1) continue;
v[0].emplace_back(std::make_pair(i,j));
v[0].emplace_back(std::make_pair(-i,j));
v[0].emplace_back(std::make_pair(i,-j));
v[0].emplace_back(std::make_pair(-i,-j));
}
for(register int i=0;i<=d2;i++) {
const int j=sqrt(d2-i*i);
if(i*i+j*j!=d2) continue;
v[1].emplace_back(std::make_pair(i,j));
v[1].emplace_back(std::make_pair(-i,j));
v[1].emplace_back(std::make_pair(i,-j));
v[1].emplace_back(std::make_pair(-i,-j));
}
for(register int i=0;i<n*2;i++) {
for(register int j=0;j<n*2;j++) {
if(!col[0][id(i,j)]) {
col[0][id(i,j)]=1;
dfs(id(i,j),0);
}
if(!col[1][id(i,j)]) {
col[1][id(i,j)]=1;
dfs(id(i,j),1);
}
}
}
for(register int i=0,cnt=0;i<n*2;i++) {
for(register int j=0;j<n*2;j++) {
if(col[0][id(i,j)]==1&&col[1][id(i,j)]==1) {
printf("%d %d\n",i,j);
if(++cnt==n*n) return 0;
}
}
}
}

[AGC025D]Choosing Points的更多相关文章

  1. 「AGC025D」 Choosing Points

    「AGC025D」 Choosing Points 神仙构造题. 首先你会尝试暴力做,先随便选一个点,然后把当前能选得全选上,然后你发现这样样例都过不了. 然后我们可以这样考虑:你把距离为 \(\sq ...

  2. 2018.07.12 atcoder Choosing Points(数学分析好题)

    传送门 一句话题意:给出n,d1,d2" role="presentation" style="position: relative;">n,d ...

  3. AtCoder Grand Contest 025 Problem D - Choosing Points

    题目大意:输入$n,d1,d2$,你要找到$n^2$个整点 x, y 满足$0 \leqslant x, y<2n$.并且找到的任意两个点距离,既不是$\sqrt{d1}$,也不是 $\sqrt ...

  4. atcoder题目合集(持续更新中)

    Choosing Points 数学 Integers on a Tree 构造 Leftmost Ball 计数dp+组合数学 Painting Graphs with AtCoDeer tarja ...

  5. 【AtCoder】AGC025题解

    A - Digits Sum 枚举即可 代码 #include <bits/stdc++.h> #define fi first #define se second #define pii ...

  6. AGC025简要题解

    AGC025简要题解 B RGB Coloring 一道简单题,枚举即可. C Interval Game 考虑可以进行的操作只有两种,即左拉和右拉,连续进行两次相同的操作是没有用的. 左拉时肯定会选 ...

  7. 有理数的稠密性(The rational points are dense on the number axis.)

    每一个实数都能用有理数去逼近到任意精确的程度,这就是有理数的稠密性.The rational points are dense on the number axis.

  8. [LeetCode] Max Points on a Line 共线点个数

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  9. CF219D. Choosing Capital for Treeland [树形DP]

    D. Choosing Capital for Treeland time limit per test 3 seconds memory limit per test 256 megabytes i ...

随机推荐

  1. linux 服务简介

    Linux服务(Linux services)对于每个应用Linux的用户来说都很重要.关闭不需要的服务,可以让Linux运行的更高效,但并不是所有的Linux服务都可以关闭.今天安装了一次CentO ...

  2. 查看服务器是否被DDOS攻击的方法

    伴随着现代互联网络快速发展,更加容易出现被攻击.尤其是ddos攻击已经不在是大网站需要关心的事情了.不少中小型企业,也在遭受ddos攻击.站长对ddos攻击不了解,所以网站被ddos攻击的时候,都不会 ...

  3. [device tree] interrupt mapping example

    This is for Devicetree Specification Release 0.1 Interrupt Mapping Example p19 在講解前,先帶進一些 PCI 的基礎觀念 ...

  4. const 引用的分析

    const 引用: 在初始化常量引用时,允许用任意表达式作为初始值,只要该表达式的结果能转换成引用的类型即可.尤其,允许为一个常量引用绑定非常量的对象.字面值,甚至是一个表达式.我们来看 const ...

  5. 利用python对WiderFace数据解析及画框

    #注:此代码稍作修改也可以用于WFLW人脸数据集的标注文件解析,#参见其README.md文件了解其每一行的信息,从中解析出相应字#段即可. import os import cv2 def draw ...

  6. Android内存溢出解决方案总结

    我的视频会议中有三个内存泄露的崆点: 1) BNLiveControlView mView = this; 未释放 (自定义view中自己引用自己造成) 2) 在自定义View中区注册了系统的网络变化 ...

  7. 3.Python3标准库--数据结构

    (一)enum:枚举类型 import enum ''' enum模块定义了一个提供迭代和比较功能的枚举类型.可以用这个为值创建明确定义的符号,而不是使用字面量整数或字符串 ''' 1.创建枚举 im ...

  8. 小知识-为什么Linux不需要磁盘碎片整理

      转载至:http://beikeit.com/post-495.html 简单译文: 这段linux官方资料主要介绍了外部碎片(external fragmentation).内部碎片(inter ...

  9. Java学习笔记(九)——javabean

    [前面的话] 实际项目在用spring框架结合dubbo框架做一个系统,虽然也负责了一块内容,但是自己的能力还是不足,所以还需要好好学习一下基础知识,然后做一些笔记.自己的自学能力还是显得不够好,每次 ...

  10. Java学习笔记(三)——静态导入,package-info,Fall-through

    [前面的话] 算是真正的放松了好几天时间,没有看任何书,没有任何任务,今天是过完年后的第一天上班时间,我又开始了我的学习之路,感觉还没有老,怎么心态越来越平静了,进入工作状态,就好好努力工作,新的一年 ...