【数论数学】【P2152】【SDOI2009】Super GCD
Description
Sheng bill有着惊人的心算能力,甚至能用大脑计算出两个巨大的数的GCD(最大公约 数)!因此他经常和别人比赛计算GCD。有一天Sheng bill很嚣张地找到了你,并要求和你比 赛,但是输给Sheng bill岂不是很丢脸!所以你决定写一个程序来教训他。
Input
共两行: 第一行:一个数A。 第二行:一个数B。
Output
一行,表示A和B的最大公约数。
Sample Input
12
54
Sample Output
6
Hint
对于100%的数据,0 < A , B ≤ 10 ^ 10000。
Solution
如果你觉得这是个裸的gcd的话,你会发现高精度乘除取余在这么大的位数下就是找死。考虑使用高精度运算复杂度更低的更损相减法。但是朴素的更损相减法是\(O(n)\)的。需要进行优化。
考虑对于两个数\(a,b\)两数共可能出现以下情况:
(不妨设\(a>b\))
1、\(a\)是偶数,\(b\)不是。那么\(gcd(a,b)=gcd(\frac{a}{2},b)\)。
2、\(a\)不是偶数,\(b\)是。那么\(gcd(a,b)=gcd(a,\frac{b}{2})\)。
3、\(a,b\)都是偶数,那么\(gcd(a,b)=2~\times~gcd(\frac{a}{2},\frac{b}{2})\)。
4、\(a,b\)都不是偶数,那么应用更损相减法,\(gcd(a,b)=gcd(b,a-b)\)。
考虑这么做的复杂度。当两个数是奇数的时候,需要更损相减法,两个奇数做差的答案是一个偶数。每次其中一个数除二后最多做一次更损相减。
考虑一个数除二的最大次数是\(logn\)的。所以优化后更损相减部分的复杂度是\(O(logn)\)的。
Code
// luogu-judger-enable-o2
#include<cstdio>
#include<cstring>
#define rg register
#define ci const int
#define cl const long long int
typedef long long int ll;
namespace IO {
char buf[50];
}
template<typename T>
inline void qr(T &x) {
char ch=getchar(),lst=' ';
while(ch>'9'||ch<'0') lst=ch,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if (lst=='-') x=-x;
}
template<typename T>
inline void write(T x,const char aft,const bool pt) {
if(x<0) {putchar('-');x=-x;}
int top=0;
do {
IO::buf[++top]=x%10+'0';
x/=10;
} while(x);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
}
template <typename T>
inline T mmax(const T a,const T b) {if(a>b) return a;return b;}
template <typename T>
inline T mmin(const T a,const T b) {if(a<b) return a;return b;}
template <typename T>
inline T mabs(const T a) {if(a<0) return -a;return a;}
template <typename T>
inline void mswap(T &a,T &b) {T temp=a;a=b;b=temp;}
struct Bignum {
short int num[10010],len;
void clear() {memset(num,0,sizeof num);len=0;}
void operator-=(const Bignum &others) {
for(rg int i=1;i<=this->len;++i) {
this->num[i]-=others.num[i];
while(this->num[i]<0) {
this->num[i]+=10,--this->num[i+1];
}
}
while(!this->num[this->len]) --this->len;
if(!this->len) ++this->len;
}
bool operator!=(const Bignum &others) {
if(this->len!=others.len) return true;
for(rg int i=1;i<=this->len;++i) if(this->num[i] != others.num[i]) return true;
return false;
}
bool operator<(const Bignum &others) {
if(this->len!=others.len) return this->len<others.len;
for(rg int i=len;i;--i) if(this->num[i]!=others.num[i]) return this->num[i]<others.num[i];
return false;
}
Bignum operator*(const Bignum &others) {
Bignum _ans;_ans.clear();
int llen=this->len+others.len+5;
for(rg int i=1;i<=this->len;++i) {
for(rg int j=1;j<=others.len;++j) {
_ans.num[i+j-1]+=this->num[i]*others.num[j];
}
}
for(rg int i=1;i<=llen;++i) {
_ans.num[i+1]+=_ans.num[i]/10;
_ans.num[i]%=10;
}
_ans.len=llen;
while(!_ans.num[_ans.len]) --_ans.len;
if(!_ans.len) _ans.len=1;
return _ans;
}
};
Bignum a,b,ans;
char MU[10010];
int cnt;
void dv(Bignum&);
void mul(Bignum&);
void init(Bignum&,int);
void print(Bignum&);
int main() {
scanf("%s",MU+1);init(a,strlen(MU+1));
scanf("%s",MU+1);init(b,strlen(MU+1));
ans.num[1]=1;ans.len=1;
while(a != b) {
bool flag=false;
if(!((int(a.num[1])) & 1)) {dv(a);flag=true;}
if(!((int(b.num[1])) & 1)) {dv(b);if(flag) mul(ans);flag=true;}
if(flag) continue;
// print(a);puts("\nemm");print(b);putchar('\n');
if(a < b) {b-=a;}
else {a-=b;}
}
ans=ans*a;
print(ans);putchar('\n');
return 0;
}
void init(Bignum &k,int l) {
for(rg int i=l;i;--i) k.num[++k.len]=MU[i]-'0';
}
void dv(Bignum &k) {
int lst=0;
for(rg int i=k.len;i;--i) {
int _temp=k.num[i]+(lst<<1)+(lst<<3);
int _ans=_temp/2;
if(_temp & 1) lst=1;else lst=0;
k.num[i]=_ans;
}
while(!k.num[k.len]) --k.len;
return;
}
void mul(Bignum &k) {
int lst=0;k.len+=2;
for(rg int i=1;i<=k.len;++i) {
k.num[i]*=2;
k.num[i]+=lst;
lst=k.num[i]/10;k.num[i]%=10;
}
while(!k.num[k.len]) --k.len;
if(!k.len) ++k.len;
return;
}
void print(Bignum &k) {
// printf("%d\n",k.len);
for(rg int i=k.len;i>0;--i) putchar(k.num[i]+'0');
}
Summary
在高精度运算下求gcd,如果两数特大可以考虑使用优化后的更损相减。但是需要注意的是更损相减法的常数在极端情况下大概会达到\(4\)倍。而欧几里得算法的常数小于\(1\)。在取模计算量可以忽略的情况下应尽量选择欧几里得算法。
再说一句GCD真的不是什么党……
【数论数学】【P2152】【SDOI2009】Super GCD的更多相关文章
- [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]
[bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...
- UVA12716 GCD XOR 数论数学构造
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/u010682557/article/details/36204645 题目给你一个N,让你求 两个数 ...
- 数学--数论--HDU 5019 revenge of GCD
Revenge of GCD Problem Description In mathematics, the greatest common divisor (gcd), also known as ...
- 数学--数论--HDU1792A New Change Problem(GCD规律推导)
A New Change Problem Problem Description Now given two kinds of coins A and B,which satisfy that GCD ...
- 数学 赛码 1010 GCD
题目传送门 /* 数学:官方题解 首先,数组中每个元素至少是1 然后对于任意一个询问Li, Ri, Ansi, 说明Li ~ Ri中的元素必定是Ansi的倍数,那么只需将其与Ansi取最小公倍数即可 ...
- 【数学】XMU 1597 GCD
题目链接: http://acm.xmu.edu.cn/JudgeOnline/problem.php?id=1597 题目大意: 求(am-bm, an-bn),结果取模1000000007,a,b ...
- noip2017考前基础复习——数论数学
·最大公约数 gcd 辗转相除法 gcd(a,b)=gcd(b,a%b) int gcd(int x,int y){ ) return x; return gcd(y,x%y); } 效率O(log ...
- P2152 [SDOI2009]SuperGCD 未完成
辗转相减求a,b的gcd其实可以优化的: 1.若a为偶数,b为奇数:gcd(a,b)=gcd(a/2,b) 2.若a为奇数,b为偶数:gcd(a,b)=gcd(a,b/2) 3.若a,b都是偶数:gc ...
- 数学:莫比乌斯反演-GCD计数
Luogu3455:莫比乌斯反演进行GCD计数 莫比乌斯反演就是用来解决这一类问题的,通常f函数是要求的那个,F函数是显然的 这样利用F的结果就可以推出来f的结果 在计算结果的时候整除分快儿一下就可以 ...
随机推荐
- Ubuntu卡在logo界面
对于这个问题,我也是在最近一次偶然的机会中发现的. 我重装了了Ubuntu 18.04, 很多东西需要重新配置, 有个刚性需求就是配置shadowsocks实现***,对于从windows向linu ...
- leetcode-回文链表
请判断一个链表是否为回文链表. 示例 1: 输入: 1->2 输出: false 示例 2: 输入: 1->2->2->1 输出: true 进阶:你能否用 O(n) 时间复杂 ...
- SpringCloud IDEA 教学 (三) Eureka Client
写在前头 本篇继续介绍基于Eureka的SpringCloud微服务搭建,回顾一下搭建过程, 第一步:建立一个服务注册中心: 第二步:建立微服务并注入到注册中心: 第三步:建立client端来访问微服 ...
- HDU 3007 Buried memory(计算几何の最小圆覆盖,模版题)
Problem Description Each person had do something foolish along with his or her growth.But,when he or ...
- 微信小程序如何获取openid
微信小程序如何获取openid wx.login({ success: res => { // 发送 res.code 到后台换取 openId, sessionKey, unionId // ...
- js学习之正则表达式
js学习之正则表达式 正则表达式(英语:Regular Expression,在代码中常简写为regex.regexp或RE)使用单个字符串来描述.匹配一系列符合某个句法规则的字符串搜索模式 一:语法 ...
- 学霸系统PipeLine功能规格说明书
学霸系统PipeLine功能规格说明书共分为以下三部分: 1.产品面向用户群体 2.用户使用说明 3.产品功能具体实现 1.产品面向用户群体 我们这组的项目并不是传统意义上能发布并进行展示的项目,因此 ...
- Android中使用ViewPager制作广告栏效果 - 解决ViewPager占满全屏页面适配问题
. 参考界面 : 携程app首页的广告栏, 使用ViewPager实现 自制页面效果图 : 源码下载地址: http://download.csdn.net/detail/han1202 ...
- 解决python中文编码错误问题
对于初学者而言,编码问题或许还没有没重视起来,但是编码问题是中文开发者必须面对的.今天来看下python开发中如何解决编码问题.注意:本篇讲的是最常见的一种编码问题,其他编码问题,如json函数引起的 ...
- TCP系列30—窗口管理&流控—4、Cork算法
一.Cork算法概述 Cork算法与Nagle算法类似,也有人把Cork算法称呼为super-Nagle.Nagle算法提出的背景是网络因为大量小包小包而导致利用率低下产生网络拥塞,网络发生拥塞的时候 ...