BZOJ2440:[中山市选2011]完全平方数(莫比乌斯函数)
Description
小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而这丝毫不影响他对其他数的热爱。
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了小X。小X很开心地收下了。
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?
Input
包含多组测试数据。文件第一行有一个整数 T,表示测试数据的组数。
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。
Output
含T 行,分别对每组数据作出回答。第 i 行输出相应的第Ki 个不是完全平方数的正整数倍的数。
Sample Input
1
13
100
1234567
Sample Output
19
163
2030745
HINT
对于 100%的数据有 1 ≤ Ki ≤ 10^9,T ≤ 50
Solution
PO姐讲的已经很明白了我为什么还要费劲写公式啊
Code
#include<iostream>
#include<cstdio>
#include<cmath>
#define LL long long
#define N (100000+1000)
using namespace std; LL T,x,k,vis[N],prime[N],mu[N],cnt; void Get_mu()
{
mu[]=;
for (int i=; i<=; ++i)
{
if (!vis[i]){prime[++cnt]=i; mu[i]=-;}
for (int j=; j<=cnt && prime[j]*i<=; ++j)
{
vis[prime[j]*i]=true;
if (i%prime[j]==) break;
mu[prime[j]*i]=-mu[i];
}
}
} LL check(LL x)
{
LL ans=;
for (LL i=; i<=sqrt(x); ++i)
ans+=x/(i*i)*mu[i];
return ans;
} int main()
{
scanf("%lld",&T);
Get_mu();
while (T--)
{
scanf("%lld",&k);
LL l=x,r=1e10,mid,now,ans;
while (l<=r)
{
mid=(l+r)>>; now=check(mid);
if (now>=k) ans=mid,r=mid-;
else l=mid+;
}
printf("%lld\n",ans);
}
}
BZOJ2440:[中山市选2011]完全平方数(莫比乌斯函数)的更多相关文章
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...
- BZOJ2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4920 Solved: 2389[Submit][Sta ...
- BZOJ2440/洛谷P4318 [中山市选2011]完全平方数 莫比乌斯函数
题意:找到第k个无平方因子数. 解法:这道题非常巧妙的运用了莫比乌斯函数的性质! 解法参考https://www.cnblogs.com/enzymii/p/8421314.html这位大佬的.这里我 ...
- BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)
题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...
- bzoj2440 [中山市选2011]完全平方数——莫比乌斯+容斥
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2440 莫比乌斯...被难倒... 看TJ:http://hzwer.com/4827.htm ...
- BZOJ 2440 [中山市选2011]完全平方数 ——莫比乌斯函数
$\sum_{i=1}^n[i==d^2*p]$ 其中p无平方因子$=\sum_{d^2\mid n,d>=2}\sum_{i=1}^{\lfloor {n/d^2} \rfloor} \lef ...
- BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)
如果能够知道不大于n的合法数有多少个,显然就可以二分答案了. 考虑怎么求这个.容易想到容斥,即枚举完全平方数.我们知道莫比乌斯函数就是此种容斥系数.筛出来就可以了. 注意二分时会爆int. #incl ...
- BZOJ2440 [中山市选2011]完全平方数
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
随机推荐
- Django的学习基础1
著名的MVC模式:所谓MVC就是把web应用分为模型(M),控制器(C),视图(V)三层:他们之间以一种插件似的,松耦合的方式连接在一起. Django的MTV模式本质上与MVC模式没有什么差别,也是 ...
- Octotree Chrome安装与使用整理
Octotree Chrome作用: 主要使你在github查看项目时可以清晰明了的看到项目的结构以及具体代码,使下载代码更具有目的性,减少不必要代码的下载,而且看起来更清楚. 效果图:(安装插件前) ...
- centos top 命令详解及退出top命令-使用p键及free命令
1.作用 top命令用来显示执行中的程序进程,使用权限是所有用户. 2.格式 top [-] [d delay] [q] [c] [S] [s] [i] [n] 3.主要参数 d:指定更新的间隔,以秒 ...
- 《JavaWeb从入门到改行》那些年一起学习的Servlet
目录 获取ServletContext : ServletContext接口中的一些方法 application域存取数据功能 代码演示: application域获取项目文件路径 代码演示: API ...
- browserslist 目标浏览器配置表
为什么需要: 根据提供的目标浏览器的环境来,智能添加css前缀,js的polyfill垫片,来兼容旧版本浏览器,而不是一股脑的添加.避免不必要的兼容代码,以提高代码的编译质量. 共享使用browser ...
- python logging的应用
#-*-coding:utf-8-*-#util import logging import logging from logging.handlers import RotatingFileHand ...
- javascript时间格式转换(今天,昨天,前天)
function transDate() { var $time =document.getElementById("share-time"); var date = $time. ...
- JQ中的FormData对象 ajax上传文件
HTML代码: <form enctype="multipart/form-data" method="POST" name="searchfo ...
- 如何创建一个基本JQuery的插件
如何创建一个基本的插件 有时您希望在整个代码中提供一些功能.例如,也许你想要一个单一的方法,你可以调用一个jQuery选择,对选择执行一系列的操作.在这种情况下,您可能需要编写一个插件. 链接jQue ...
- 关于moucedown 的3种触发方式
与 click 事件不同 mousedown 按下鼠标就可以触发 click 只能用鼠标左键触发, 而mousedown 可以由单击.中键.或右击 触发 根据对event.which 的判断,可以 ...