右转→https://www.cnblogs.com/mytqwqq/p/15057231.html

下面放个板子 (禁止莱莱白嫖板子)

P3369 【模板】普通平衡树

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5;
int n,op,x;
struct Treap{
int rt,tot,lc[N],rc[N],val[N],sz[N],rnd[N];
void upd(int x){
sz[x]=sz[lc[x]]+sz[rc[x]]+1;
}
int getnew(int k){
val[++tot]=k,rnd[tot]=rand(),sz[tot]=1;
return tot;
}
void split(int p,int &x,int &y,int k){
if(!p){x=y=0;return ;}
if(val[p]<=k) x=p,split(rc[p],rc[p],y,k);
else y=p,split(lc[p],x,lc[p],k);
upd(p);
}
int merge(int x,int y){ //前提:x 的权值全部 < y 的权值
if(!x||!y) return x+y;
if(rnd[x]<rnd[y]){rc[x]=merge(rc[x],y),upd(x);return x;}
else lc[y]=merge(x,lc[y]),upd(y);
return y;
}
void insert(int k){
int x=0,y=0;
split(rt,x,y,k),rt=merge(merge(x,getnew(k)),y);
}
void erase(int k){
int x=0,y=0,z=0;
split(rt,x,z,k),split(x,x,y,k-1);
rt=merge(merge(x,merge(lc[y],rc[y])),z);
}
int rank(int k){
int x=0,y=0,ans;
split(rt,x,y,k-1),ans=sz[x]+1,rt=merge(x,y);
return ans;
}
int kth(int rt,int k){
if(!rt) return 0;
if(sz[lc[rt]]+1==k) return rt;
if(sz[lc[rt]]+1>k) return kth(lc[rt],k);
return kth(rc[rt],k-sz[lc[rt]]-1);
}
int pre(int k){
int x=0,y=0,ans;
split(rt,x,y,k-1),ans=kth(x,sz[x]),rt=merge(x,y);
return ans;
}
int nxt(int k){
int x=0,y=0,ans;
split(rt,x,y,k),ans=kth(y,1),rt=merge(x,y);
return ans;
}
}T;
signed main(){
srand(time(0));
scanf("%d",&n);
while(n--){
scanf("%d%d",&op,&x);
if(op==1) T.insert(x);
else if(op==2) T.erase(x);
else if(op==3) printf("%d\n",T.rank(x));
else if(op==4) printf("%d\n",T.val[T.kth(T.rt,x)]);
else if(op==5) printf("%d\n",T.val[T.pre(x)]);
else printf("%d\n",T.val[T.nxt(x)]);
}
return 0;
}

P3391 【模板】文艺平衡树

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5;
int n,m,l,r;
struct Treap{
int rt,tot,lc[N],rc[N],val[N],sz[N],rnd[N],rev[N];
void pushup(int x){
sz[x]=sz[lc[x]]+sz[rc[x]]+1;
}
void pushdown(int x){
if(!rev[x]) return ;
swap(lc[x],rc[x]),rev[lc[x]]^=1,rev[rc[x]]^=1;
rev[x]=0;
}
int getnew(int k){
val[++tot]=k,rnd[tot]=rand(),sz[tot]=1;
return tot;
}
void split(int p,int &x,int &y,int k){ //按子树大小分裂
if(!p){x=y=0;return ;}
pushdown(p);
if(sz[lc[p]]+1<=k) x=p,split(rc[p],rc[p],y,k-sz[lc[p]]-1);
else y=p,split(lc[p],x,lc[p],k);
pushup(p);
}
int merge(int x,int y){
if(!x||!y) return x+y;
if(rnd[x]<rnd[y]){
pushdown(x),rc[x]=merge(rc[x],y),pushup(x);
return x;
}
else pushdown(y),lc[y]=merge(x,lc[y]),pushup(y);
return y;
}
}T;
void print(int x){
T.pushdown(x);
if(T.lc[x]) print(T.lc[x]);
printf("%d ",T.val[x]);
if(T.rc[x]) print(T.rc[x]);
}
signed main(){
srand(time(0));
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
T.rt=T.merge(T.rt,T.getnew(i));
while(m--){
scanf("%d%d",&l,&r);
int x=0,y=0,z=0;
T.split(T.rt,x,y,l-1),T.split(y,y,z,r-l+1);
T.rev[y]^=1,T.rt=T.merge(x,T.merge(y,z));
}
print(T.rt);
return 0;
}

「算法笔记」FHQ-Treap的更多相关文章

  1. 「学习笔记」 FHQ Treap

    FHQ Treap FHQ Treap (%%%发明者范浩强年年NOI金牌)是一种神奇的数据结构,也叫非旋Treap,它不像Treap zig zag搞不清楚(所以叫非旋嘛),也不像Splay完全看不 ...

  2. 「算法笔记」旋转 Treap

    一.引入 随机数据中,BST 一次操作的期望复杂度为 \(\mathcal{O}(\log n)\). 然而,BST 很容易退化,例如在 BST 中一次插入一个有序序列,将会得到一条链,平均每次操作的 ...

  3. 「算法笔记」快速数论变换(NTT)

    一.简介 前置知识:多项式乘法与 FFT. FFT 涉及大量 double 类型数据操作和 \(\sin,\cos\) 运算,会产生误差.快速数论变换(Number Theoretic Transfo ...

  4. 「算法笔记」树形 DP

    一.树形 DP 基础 又是一篇鸽了好久的文章--以下面这道题为例,介绍一下树形 DP 的一般过程. POJ 2342 Anniversary party 题目大意:有一家公司要举行一个聚会,一共有 \ ...

  5. 「算法笔记」2-SAT 问题

    一.定义 k-SAT(Satisfiability)问题的形式如下: 有 \(n\) 个 01 变量 \(x_1,x_2,\cdots,x_n\),另有 \(m\) 个变量取值需要满足的限制. 每个限 ...

  6. 「算法笔记」Polya 定理

    一.前置概念 接下来的这些定义摘自 置换群 - OI Wiki. 1. 群 若集合 \(s\neq \varnothing\) 和 \(S\) 上的运算 \(\cdot\) 构成的代数结构 \((S, ...

  7. 「算法笔记」Splay

    一.简介 Splay(伸展树)是平衡树中的一种.它通过不断将某个节点旋转到根节点的位置,使整棵树仍满足 BST 的性质,并且保持平衡而不至于退化为链. 频繁访问的节点会被移动到离根节点较近的位置,进而 ...

  8. 「算法笔记」状压 DP

    一.关于状压 dp 为了规避不确定性,我们将需要枚举的东西放入状态.当不确定性太多的时候,我们就需要将它们压进较少的维数内. 常见的状态: 天生二进制(开关.选与不选.是否出现--) 爆搜出状态,给它 ...

  9. 「算法笔记」Min_25 筛

    戳 这里(加了密码).虽然写的可能还算清楚,但还是不公开了吧 QwQ. 真的想看的 私信可能会考虑给密码 qwq.就放个板子: //LOJ 6053 简单的函数 f(p^c)=p xor c #inc ...

随机推荐

  1. js正则表达式之密码强度验证

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  2. JAVA序列化浅析

    java.io.Serializable浅析 Java API中java.io.Serializable接口源码: 1 public interface Serializable { 2 } 类通过实 ...

  3. zabbix之主动模式和proxy的主动模式

    #:找一台新主机配置上agent,注意版本要和server端保持一样 #:官网地址:https://www.zabbix.com/documentation/4.0/zh/manual/install ...

  4. Dubbo服务调用超时

    服务降级的发生,其实是由于消费者调用服务超时引起的,即从发出调用请求到获取到提供者的响应结果这个时间超出了设定的时限.默认服务调用超时时限为1秒.可以在消费者端与提供者端设置超时时限. 一.创建提供者 ...

  5. 【Spring Framework】spring管理自己new的对象

    使用AutowireCapableBeanFactory手动注入 使用.newInstance();创建对象的话,如果其他对象都使用Spring Autowired,还需要手动创建所有依赖的Bean: ...

  6. webapck搭建环境,让你知道vue中的h函数的作用和虚拟节点如何上树!

    搭建环境 npm init 初始化项目 npm i -D snabbdom 安装 npm i -D webpack@5 webpack-cli@3 webpack-dev-server@3 简单介绍 ...

  7. 6、Redis五大数据类型---列表(List)

    一.列表(List)简介 单键多值:Redis 列表是简单的字符串列表,按照插入顺序排序.你可以添加一个元素到列表的头部(左边)或者尾部(右边). 它的底层实际是个双向链表,对两端的操作性能很高,通过 ...

  8. Mongodb集群调研

    目录 一.高可用集群的解决方案 二.MongoDB的高可用集群配置 三.Mongo集群实现高可用方式详解 四.Sharding分片技术 一.高可用集群的解决方案 高可用性即HA(High Availa ...

  9. Nginx LOCATOIN块配置

    1 匹配模式优先级 location = /uri =开头表示精确匹配,只有完全匹配上才能生效. location ^~ /uri ^~ 开头对URL路径进行前缀匹配,并且在正则之前.无正则普通匹配( ...

  10. MySQL如何把varchar类型字段转换成int类型进行倒叙排序

    SELECT * FROM sheet2 t1 WHERE t1.`金额`+'0' ORDER BY t1.`金额` DESC;