matplotlib教程学习笔记

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec def index_to_coordinate(index, extent, origin):
"""Return the pixel center of an index."""
left, right, bottom, top = extent hshift = 0.5 * np.sign(right - left)
left, right = left + hshift, right - hshift
vshift = 0.5 * np.sign(top - bottom)
bottom, top = bottom + vshift, top - vshift if origin == 'upper':
bottom, top = top, bottom return {
"[0, 0]": (left, bottom),
"[M', 0]": (left, top),
"[0, N']": (right, bottom),
"[M', N']": (right, top),
}[index] def get_index_label_pos(index, extent, origin, inverted_xindex):
"""
Return the desired position and horizontal alignment of an index label.
"""
if extent is None:
extent = lookup_extent(origin)
left, right, bottom, top = extent
x, y = index_to_coordinate(index, extent, origin) is_x0 = index[-2:] == "0]"
halign = 'left' if is_x0 ^ inverted_xindex else 'right'
hshift = 0.5 * np.sign(left - right)
x += hshift * (1 if is_x0 else -1)
return x, y, halign def get_color(index, data, cmap):
"""Return the data color of an index."""
val = {
"[0, 0]": data[0, 0],
"[0, N']": data[0, -1],
"[M', 0]": data[-1, 0],
"[M', N']": data[-1, -1],
}[index]
return cmap(val / data.max()) def lookup_extent(origin):
"""Return extent for label positioning when not given explicitly."""
if origin == 'lower':
return (-0.5, 6.5, -0.5, 5.5)
else:
return (-0.5, 6.5, 5.5, -0.5) def set_extent_None_text(ax):
ax.text(3, 2.5, 'equals\nextent=None', size='large',
ha='center', va='center', color='w') def plot_imshow_with_labels(ax, data, extent, origin, xlim, ylim):
"""Actually run ``imshow()`` and add extent and index labels."""
im = ax.imshow(data, origin=origin, extent=extent) # extent labels (left, right, bottom, top)
left, right, bottom, top = im.get_extent()
if xlim is None or top > bottom:
upper_string, lower_string = 'top', 'bottom'
else:
upper_string, lower_string = 'bottom', 'top'
if ylim is None or left < right:
port_string, starboard_string = 'left', 'right'
inverted_xindex = False
else:
port_string, starboard_string = 'right', 'left'
inverted_xindex = True
bbox_kwargs = {'fc': 'w', 'alpha': .75, 'boxstyle': "round4"}
ann_kwargs = {'xycoords': 'axes fraction',
'textcoords': 'offset points',
'bbox': bbox_kwargs}
ax.annotate(upper_string, xy=(.5, 1), xytext=(0, -1),
ha='center', va='top', **ann_kwargs)
ax.annotate(lower_string, xy=(.5, 0), xytext=(0, 1),
ha='center', va='bottom', **ann_kwargs)
ax.annotate(port_string, xy=(0, .5), xytext=(1, 0),
ha='left', va='center', rotation=90,
**ann_kwargs)
ax.annotate(starboard_string, xy=(1, .5), xytext=(-1, 0),
ha='right', va='center', rotation=-90,
**ann_kwargs)
ax.set_title('origin: {origin}'.format(origin=origin)) # index labels
for index in ["[0, 0]", "[0, N']", "[M', 0]", "[M', N']"]:
tx, ty, halign = get_index_label_pos(index, extent, origin,
inverted_xindex)
facecolor = get_color(index, data, im.get_cmap())
ax.text(tx, ty, index, color='white', ha=halign, va='center',
bbox={'boxstyle': 'square', 'facecolor': facecolor})
if xlim:
ax.set_xlim(*xlim)
if ylim:
ax.set_ylim(*ylim) def generate_imshow_demo_grid(extents, xlim=None, ylim=None):
N = len(extents)
fig = plt.figure(tight_layout=True)
fig.set_size_inches(6, N * (11.25) / 5)
gs = GridSpec(N, 5, figure=fig) columns = {'label': [fig.add_subplot(gs[j, 0]) for j in range(N)],
'upper': [fig.add_subplot(gs[j, 1:3]) for j in range(N)],
'lower': [fig.add_subplot(gs[j, 3:5]) for j in range(N)]}
x, y = np.ogrid[0:6, 0:7]
data = x + y for origin in ['upper', 'lower']:
for ax, extent in zip(columns[origin], extents):
plot_imshow_with_labels(ax, data, extent, origin, xlim, ylim) for ax, extent in zip(columns['label'], extents):
text_kwargs = {'ha': 'right',
'va': 'center',
'xycoords': 'axes fraction',
'xy': (1, .5)}
if extent is None:
ax.annotate('None', **text_kwargs)
ax.set_title('extent=')
else:
left, right, bottom, top = extent
text = ('left: {left:0.1f}\nright: {right:0.1f}\n' +
'bottom: {bottom:0.1f}\ntop: {top:0.1f}\n').format(
left=left, right=right, bottom=bottom, top=top) ax.annotate(text, **text_kwargs)
ax.axis('off')
return columns
generate_imshow_demo_grid(extents=[None]);

通常来说,对于shape(M, N)来讲,M是沿着竖直方向的,而N是沿着水平方向的。

origin参数觉得了其实位置:

对于 origin="lower":

[0, 0] 在 (left, bottom)位置

[M, 0] 在 (left, upper)位置

[0, N] 在 (right, bottom)位置

[M, N] 在 (right, top) 位置

实际上就是,从左下角往右上角发展

而对于orgin="upper",则是从左上角往右下角发展

显示的extent

extent是控制图片的坐标轴的工具,为(left, right, bottom, top)

就是控制x轴为: left -> right

y轴为: bottom -> top

extents = [(-0.5, 6.5, -0.5, 5.5),
(-0.5, 6.5, 5.5, -0.5),
(6.5, -0.5, -0.5, 5.5),
(6.5, -0.5, 5.5, -0.5)] columns = generate_imshow_demo_grid(extents)
set_extent_None_text(columns['upper'][1])
set_extent_None_text(columns['lower'][0])

Explicit extent and axes limits

搞不懂了啊,为什么加了limits之后,可以随便转来转去了啊不知道,就这样吧

generate_imshow_demo_grid(extents=[None] + extents,
xlim=(-2, 8), ylim=(-1, 6));

matplotlib 进阶之origin and extent in imshow的更多相关文章

  1. matplotlib 进阶之Tight Layout guide

    目录 简单的例子 Use with GridSpec Legend and Annotations Use with AxesGrid1 Colorbar 函数链接 matplotlib教程学习笔记 ...

  2. 【python】matplotlib进阶

    参考文章:https://liam0205.me/2014/09/11/matplotlib-tutorial-zh-cn/ 几个重要对象:图像.子图.坐标轴.记号 figure:图像, subplo ...

  3. matplotlib 进阶之Constrained Layout Guide

    目录 简单的例子 Colorbars Suptitle Legends Padding and Spacing spacing with colobars rcParams Use with Grid ...

  4. matplotlib 进阶之Customizing Figure Layouts Using GridSpec and Other Functions

    目录 对Gridspec的一些精细的调整 利用SubplotSpec fig.add_grdispec; gs.subgridspec 一个利用Subplotspec的复杂例子 函数链接 matplo ...

  5. matplotlib 进阶之Legend guide

    目录 matplotlib.pyplot.legend 方法1自动检测 方法2为现有的Artist添加 方3显示添加图例 控制图例的输入 为一类Artist设置图例 Legend 的位置 loc, b ...

  6. matplotlib 进阶之Artist tutorial(如何操作Atrist和定制)

    目录 基本 plt.figure() fig.add_axes() ax.lines set_xlabel 一个完整的例子 定制你的对象 obj.set(alpha=0.5, zorder=2), o ...

  7. 基于matplotlib的数据可视化 - 热图imshow

    热图: Display an image on the axes. 可以用来比较两个矩阵的相似程度 mp.imshow(z, cmap=颜色映射,origin=垂直轴向) imshow( X, cma ...

  8. 『Python』matplotlib的imshow用法

    热力图是一种数据的图形化表示,具体而言,就是将二维数组中的元素用颜色表示.热力图之所以非常有用,是因为它能够从整体视角上展示数据,更确切的说是数值型数据. 使用imshow()函数可以非常容易地制作热 ...

  9. matplotlib 入门之Sample plots in Matplotlib

    文章目录 Line Plot One figure, a set of subplots Image 展示图片 展示二元正态分布 A sample image Interpolating images ...

随机推荐

  1. A Child's History of England.40

    Excommunication was, next to the Interdict I told you of at the close {end} of the last chapter, the ...

  2. 一个神奇的JS混淆,JSFuck!

    JSFuck,整体由6个字符[, ], (, ), !, +组成,但却是可以正常运行的JS代码,JSFuck程序可以在任何Web浏览器或引擎中运行解释JavaScript! 看一段代码,源代码为:do ...

  3. day28 进程(Process)

    day28 进程(Process) 1.进程的概念 进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础. # 进程是系统进行 ...

  4. Spark(八)【利用广播小表实现join避免Shuffle】

    目录 使用场景 核心思路 代码演示 正常join 正常left join 广播:join 广播:left join 不适用场景 使用场景 大表join小表 只能广播小表 普通的join是会走shuff ...

  5. 分类模型性能的评判方法-ROC分析

    一.混淆矩阵 二.引入ROC曲线 如上第一幅图,蓝色高斯表示真实值为阴性,红色高斯表示真实值为阳性.A,B,C代表不同的阈值,阈值线左边表示预测值为阴性,阈值线右边表示预测值为阳性.阈值从A到C,由此 ...

  6. STM32一些特殊引脚做IO使用的注意事项

    1 PC13.PC14.PC15的使用 这三个引脚与RTC复用,<STM32参考手册>中这样描述: PC13 PC14 PC15需要将VBAT与VDD连接,实测采用以下程序驱动4个74HC ...

  7. 单链表的模板类(C++)

    /*header.h*/#pragma once #include<iostream> using namespace std; template<class T> struc ...

  8. 【Linux】【Services】【Package】编译安装

    程序包编译安装:         testapp-VERSION-release.src.rpm --> 安装后,使用rpmbuild命令制作成二进制格式的rpm包,而后再安装:         ...

  9. list.jsp页面

    <%@ page contentType="text/html;charset=UTF-8" language="java" %><%@tag ...

  10. 1.使用Lucene开发自己的搜索引擎--倒排索引基础知识

    1.单词--文档矩阵 单词-文档矩阵是表达两者之间所具有的一种包含关系的概念模型,图3-1展示了其含义.图3-1的每列代表一个文档,每行代表一个单词,打对勾的位置代表包含关系.