matplotlib教程学习笔记

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec def index_to_coordinate(index, extent, origin):
"""Return the pixel center of an index."""
left, right, bottom, top = extent hshift = 0.5 * np.sign(right - left)
left, right = left + hshift, right - hshift
vshift = 0.5 * np.sign(top - bottom)
bottom, top = bottom + vshift, top - vshift if origin == 'upper':
bottom, top = top, bottom return {
"[0, 0]": (left, bottom),
"[M', 0]": (left, top),
"[0, N']": (right, bottom),
"[M', N']": (right, top),
}[index] def get_index_label_pos(index, extent, origin, inverted_xindex):
"""
Return the desired position and horizontal alignment of an index label.
"""
if extent is None:
extent = lookup_extent(origin)
left, right, bottom, top = extent
x, y = index_to_coordinate(index, extent, origin) is_x0 = index[-2:] == "0]"
halign = 'left' if is_x0 ^ inverted_xindex else 'right'
hshift = 0.5 * np.sign(left - right)
x += hshift * (1 if is_x0 else -1)
return x, y, halign def get_color(index, data, cmap):
"""Return the data color of an index."""
val = {
"[0, 0]": data[0, 0],
"[0, N']": data[0, -1],
"[M', 0]": data[-1, 0],
"[M', N']": data[-1, -1],
}[index]
return cmap(val / data.max()) def lookup_extent(origin):
"""Return extent for label positioning when not given explicitly."""
if origin == 'lower':
return (-0.5, 6.5, -0.5, 5.5)
else:
return (-0.5, 6.5, 5.5, -0.5) def set_extent_None_text(ax):
ax.text(3, 2.5, 'equals\nextent=None', size='large',
ha='center', va='center', color='w') def plot_imshow_with_labels(ax, data, extent, origin, xlim, ylim):
"""Actually run ``imshow()`` and add extent and index labels."""
im = ax.imshow(data, origin=origin, extent=extent) # extent labels (left, right, bottom, top)
left, right, bottom, top = im.get_extent()
if xlim is None or top > bottom:
upper_string, lower_string = 'top', 'bottom'
else:
upper_string, lower_string = 'bottom', 'top'
if ylim is None or left < right:
port_string, starboard_string = 'left', 'right'
inverted_xindex = False
else:
port_string, starboard_string = 'right', 'left'
inverted_xindex = True
bbox_kwargs = {'fc': 'w', 'alpha': .75, 'boxstyle': "round4"}
ann_kwargs = {'xycoords': 'axes fraction',
'textcoords': 'offset points',
'bbox': bbox_kwargs}
ax.annotate(upper_string, xy=(.5, 1), xytext=(0, -1),
ha='center', va='top', **ann_kwargs)
ax.annotate(lower_string, xy=(.5, 0), xytext=(0, 1),
ha='center', va='bottom', **ann_kwargs)
ax.annotate(port_string, xy=(0, .5), xytext=(1, 0),
ha='left', va='center', rotation=90,
**ann_kwargs)
ax.annotate(starboard_string, xy=(1, .5), xytext=(-1, 0),
ha='right', va='center', rotation=-90,
**ann_kwargs)
ax.set_title('origin: {origin}'.format(origin=origin)) # index labels
for index in ["[0, 0]", "[0, N']", "[M', 0]", "[M', N']"]:
tx, ty, halign = get_index_label_pos(index, extent, origin,
inverted_xindex)
facecolor = get_color(index, data, im.get_cmap())
ax.text(tx, ty, index, color='white', ha=halign, va='center',
bbox={'boxstyle': 'square', 'facecolor': facecolor})
if xlim:
ax.set_xlim(*xlim)
if ylim:
ax.set_ylim(*ylim) def generate_imshow_demo_grid(extents, xlim=None, ylim=None):
N = len(extents)
fig = plt.figure(tight_layout=True)
fig.set_size_inches(6, N * (11.25) / 5)
gs = GridSpec(N, 5, figure=fig) columns = {'label': [fig.add_subplot(gs[j, 0]) for j in range(N)],
'upper': [fig.add_subplot(gs[j, 1:3]) for j in range(N)],
'lower': [fig.add_subplot(gs[j, 3:5]) for j in range(N)]}
x, y = np.ogrid[0:6, 0:7]
data = x + y for origin in ['upper', 'lower']:
for ax, extent in zip(columns[origin], extents):
plot_imshow_with_labels(ax, data, extent, origin, xlim, ylim) for ax, extent in zip(columns['label'], extents):
text_kwargs = {'ha': 'right',
'va': 'center',
'xycoords': 'axes fraction',
'xy': (1, .5)}
if extent is None:
ax.annotate('None', **text_kwargs)
ax.set_title('extent=')
else:
left, right, bottom, top = extent
text = ('left: {left:0.1f}\nright: {right:0.1f}\n' +
'bottom: {bottom:0.1f}\ntop: {top:0.1f}\n').format(
left=left, right=right, bottom=bottom, top=top) ax.annotate(text, **text_kwargs)
ax.axis('off')
return columns
generate_imshow_demo_grid(extents=[None]);

通常来说,对于shape(M, N)来讲,M是沿着竖直方向的,而N是沿着水平方向的。

origin参数觉得了其实位置:

对于 origin="lower":

[0, 0] 在 (left, bottom)位置

[M, 0] 在 (left, upper)位置

[0, N] 在 (right, bottom)位置

[M, N] 在 (right, top) 位置

实际上就是,从左下角往右上角发展

而对于orgin="upper",则是从左上角往右下角发展

显示的extent

extent是控制图片的坐标轴的工具,为(left, right, bottom, top)

就是控制x轴为: left -> right

y轴为: bottom -> top

extents = [(-0.5, 6.5, -0.5, 5.5),
(-0.5, 6.5, 5.5, -0.5),
(6.5, -0.5, -0.5, 5.5),
(6.5, -0.5, 5.5, -0.5)] columns = generate_imshow_demo_grid(extents)
set_extent_None_text(columns['upper'][1])
set_extent_None_text(columns['lower'][0])

Explicit extent and axes limits

搞不懂了啊,为什么加了limits之后,可以随便转来转去了啊不知道,就这样吧

generate_imshow_demo_grid(extents=[None] + extents,
xlim=(-2, 8), ylim=(-1, 6));

matplotlib 进阶之origin and extent in imshow的更多相关文章

  1. matplotlib 进阶之Tight Layout guide

    目录 简单的例子 Use with GridSpec Legend and Annotations Use with AxesGrid1 Colorbar 函数链接 matplotlib教程学习笔记 ...

  2. 【python】matplotlib进阶

    参考文章:https://liam0205.me/2014/09/11/matplotlib-tutorial-zh-cn/ 几个重要对象:图像.子图.坐标轴.记号 figure:图像, subplo ...

  3. matplotlib 进阶之Constrained Layout Guide

    目录 简单的例子 Colorbars Suptitle Legends Padding and Spacing spacing with colobars rcParams Use with Grid ...

  4. matplotlib 进阶之Customizing Figure Layouts Using GridSpec and Other Functions

    目录 对Gridspec的一些精细的调整 利用SubplotSpec fig.add_grdispec; gs.subgridspec 一个利用Subplotspec的复杂例子 函数链接 matplo ...

  5. matplotlib 进阶之Legend guide

    目录 matplotlib.pyplot.legend 方法1自动检测 方法2为现有的Artist添加 方3显示添加图例 控制图例的输入 为一类Artist设置图例 Legend 的位置 loc, b ...

  6. matplotlib 进阶之Artist tutorial(如何操作Atrist和定制)

    目录 基本 plt.figure() fig.add_axes() ax.lines set_xlabel 一个完整的例子 定制你的对象 obj.set(alpha=0.5, zorder=2), o ...

  7. 基于matplotlib的数据可视化 - 热图imshow

    热图: Display an image on the axes. 可以用来比较两个矩阵的相似程度 mp.imshow(z, cmap=颜色映射,origin=垂直轴向) imshow( X, cma ...

  8. 『Python』matplotlib的imshow用法

    热力图是一种数据的图形化表示,具体而言,就是将二维数组中的元素用颜色表示.热力图之所以非常有用,是因为它能够从整体视角上展示数据,更确切的说是数值型数据. 使用imshow()函数可以非常容易地制作热 ...

  9. matplotlib 入门之Sample plots in Matplotlib

    文章目录 Line Plot One figure, a set of subplots Image 展示图片 展示二元正态分布 A sample image Interpolating images ...

随机推荐

  1. 面向Web应用的并发压力测试工具——Locust实用攻略

    1. 概述 该方案写作目的在于描述一个基于Locust实现的压力测试,文中详细地描述了如何利用locustfile.py文件定义期望达成的测试用例,并利用Locust对目标站点进行并发压力测试. 特别 ...

  2. 【风控算法】一、变量分箱、WOE和IV值计算

    一.变量分箱 变量分箱常见于逻辑回归评分卡的制作中,在入模前,需要对原始变量值通过分箱映射成woe值.举例来说,如"年龄"这一变量,我们需要找到合适的切分点,将连续的年龄打散到不同 ...

  3. 云原生时代的 APM

    作者 | 刘浩杨 来源|尔达 Erda 公众号 ​APM 的全称是 Application Performance Management(应用性能管理),早在 90 年代中期就有厂商提出性能管理的概念 ...

  4. java web 限制同一个用户在不同处登入

    用到的技术:map集合,sessionListener监听器,Fiter过滤器. 实现思路: 一.利用一个全局的map集合来保存每个用户sessionID的值的一个集合.一个用户对应一个session ...

  5. SpringMVC(4):文件上传与下载

    一,文件上传 文件上传是项目开发中最常见的功能之一 ,springMVC 可以很好的支持文件上传,但是SpringMVC上下文中默认没有装配MultipartResolver,因此默认情况下其不能处理 ...

  6. 【Linux】【Services】【Project】Haproxy Keepalived Postfix实现邮件网关Cluster

    1. 简介: 1.1. 背景:公司使用exchange服务器作为邮件服务器,但是使用Postfix作为邮件网关实现病毒检测,内容过滤,反垃圾邮件等功能.原来的架构非常简单,只有两台机器,一个负责进公司 ...

  7. BigDecimal中要注意的一些事

    一.关于public BigDecimal(double val) BigDecimal中三个主要的构造函数 1 public BigDecimal(double val) 将double表示形式转换 ...

  8. 【Linux】【RedHat】下载 安装 注册

    RedHat 下载 安装 注册 记录 因为找入口太麻烦了,所以写了篇博文记录下来大致入口@萌狼蓝天 注册 点击进入注册地址(https://www.redhat.com/wapps/ugc/regis ...

  9. pipeline input步骤

    目录 一.简介 二.input步骤复杂用法 三.获取上游pipeline信息 四.超时中止 一.简介 执行imput步骤会暂停pipeline,直到用户输入参数.这是一种特殊的参数化pipeline的 ...

  10. Svelte入门——Web Components实现跨框架组件复用(二)

    在上节中,我们一起了解了如何使用Svelte封装Web Component,从而实现在不同页面间使用电子表格组件. Svelte封装组件跨框架复用,带来的好处也十分明显: 1.使用框架开发,更容易维护 ...