(嘤嘤嘤 又是一个自闭了一晚上的题)

qwq果然不是平面上的点的问题,也可以直接用KDTree打暴力

我们对于巧克力直接建kdtree

维护一个\(mx[i],mn[i]\)

但是有一个非常不友好的事情

我们貌似很难对这个东西进行一些实质上的剪枝

因为他求的是一个和的形式,而不是一个最值QWQ

那么该怎么办呢?

我们这时候考虑,对于一个kdtree上的每一个节点,我们都维护一个子树sum表示子树内的所有巧克力的权值之和。

那么对于一次\(query\),假设我们最大的甜度都不会超过\(c\)的话,那就代表我们可以直接把这个子树的\(sum\)加进\(ans\)里面了,因为他是一定能合法的

int getsum(cho a,peo b)
{
if (!a.num) return 1e9;
int tmp =0;
for (int i=0;i<=1;i++)
tmp=tmp+a.d[i]*b.d[i];
return tmp;
}
int calc(cho a,peo b)
{
if (!a.num) return 1e9;
int tmp =0;
for (int i=0;i<=1;i++)
tmp=tmp+min(a.mn[i]*b.d[i],a.mx[i]*b.d[i]);
return tmp;
}
int getmax(cho a,peo b)
{
if (!a.num) return 1e9;
int tmp = 0;
for (int i=0;i<=1;i++)
tmp=tmp+max(a.mx[i]*b.d[i],a.mn[i]*b.d[i]);
return tmp;
}
void query(int x)
{
if (!x) return;
if (getmax(t[x],now)<now.c)
{
tmp=tmp+t[x].sum;
return;
}
int c = now.c;
int d1 = calc(t[t[x].l],now);
int d2 = calc(t[t[x].r],now);
int d = getsum(t[x],now);
if (d<now.c) tmp=tmp+t[x].val;
if (d1<c) query(t[x].l);
if (d2<c) query(t[x].r);
}

那么其实剩下的问题也就迎刃而解了

直接上代码吧

// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk makr_pair
#define ll long long
#define int long long using namespace std; inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
} const int maxn = 3e6+1e2; struct cho{
int mn[2],mx[2];
int d[2];
int l,r;
int val;
int sum;
int num;
}; struct peo{
int d[2],c;
}; cho t[maxn];
peo now;
int n,m,root;
int sum;
int ymh;
int tmp; bool operator < (cho a,cho b)
{
return a.d[ymh]<b.d[ymh];
} void up(int root)
{
for (int i=0;i<=1;i++)
{
if (t[root].l)
{
t[root].mn[i]=min(t[root].mn[i],t[t[root].l].mn[i]);
t[root].mx[i]=max(t[root].mx[i],t[t[root].l].mx[i]);
}
if (t[root].r)
{
t[root].mn[i]=min(t[root].mn[i],t[t[root].r].mn[i]);
t[root].mx[i]=max(t[root].mx[i],t[t[root].r].mx[i]);
}
}
t[root].sum=t[root].val+t[t[root].l].sum+t[t[root].r].sum;
} void build(int &x,int l,int r,int dd)
{
//cout<<1<<endl;
ymh = dd;
int mid = l+r >> 1;
x = mid;
nth_element(t+l,t+x,t+r+1);
for (int i=0;i<=1;i++) t[x].mn[i]=t[x].mx[i]=t[x].d[i];
if (l<x) build(t[x].l,l,mid-1,dd^1);
if (r>x) build(t[x].r,mid+1,r,dd^1);
up(x);
} int getsum(cho a,peo b)
{
if (!a.num) return 1e9;
int tmp =0;
for (int i=0;i<=1;i++)
tmp=tmp+a.d[i]*b.d[i];
return tmp;
}
int calc(cho a,peo b)
{
if (!a.num) return 1e9;
int tmp =0;
for (int i=0;i<=1;i++)
tmp=tmp+min(a.mn[i]*b.d[i],a.mx[i]*b.d[i]);
return tmp;
}
int getmax(cho a,peo b)
{
if (!a.num) return 1e9;
int tmp = 0;
for (int i=0;i<=1;i++)
tmp=tmp+max(a.mx[i]*b.d[i],a.mn[i]*b.d[i]);
return tmp;
}
void query(int x)
{
if (!x) return;
if (getmax(t[x],now)<now.c)
{
tmp=tmp+t[x].sum;
return;
}
int c = now.c;
int d1 = calc(t[t[x].l],now);
int d2 = calc(t[t[x].r],now);
int d = getsum(t[x],now);
if (d<now.c) tmp=tmp+t[x].val;
if (d1<c) query(t[x].l);
if (d2<c) query(t[x].r);
} signed main()
{
//freopen("a.in","r",stdin);
//freopen("a.out","w",stdout); n=read(),m=read();
for (int i=1;i<=n;i++)
{
for(int j=0;j<=1;j++) t[i].d[j]=read();
t[i].val=read();
t[i].num=i;
}
build(root,1,n,0);
for(int i=1;i<=m;i++){
now.d[0]=read();
now.d[1]=read();
now.c=read();
tmp=0;
query(root);
cout<<tmp<<"\n";
}
return 0;
}

不过总的来说

kdtree真的是一个很优雅的暴力啊!

嘤嘤嘤

洛谷4475 巧克力王国(KD-Tree + 维护子树和)的更多相关文章

  1. 洛谷P4475 巧克力王国

    洛谷P4475 巧克力王国 题目描述 巧克力王国里的巧克力都是由牛奶和可可做成的. 但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜欢过于甜的巧克力. 对于每一块巧克力,我们设 x 和 y 为 ...

  2. 洛谷 P4475 巧克力王国 解题报告

    P4475 巧克力王国 题目描述 巧克力王国里的巧克力都是由牛奶和可可做成的.但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜欢过于甜的巧克力. 对于每一块巧克力,我们设 \(x\) 和 \( ...

  3. P4475 巧克力王国 k-d tree

    思路:\(k-d\ tree\) 提交:2次 错因:\(query\)时有一个\(mx\)误写成\(mn\)窝太菜了. 题解: 先把\(k-d\ tree\)建出来,然后查询时判一下整个矩形是否整体\ ...

  4. 洛谷P3018 [USACO11MAR]树装饰Tree Decoration

    洛谷P3018 [USACO11MAR]树装饰Tree Decoration树形DP 因为要求最小,我们就贪心地用每个子树中的最小cost来支付就行了 #include <bits/stdc++ ...

  5. 【洛谷1501】[国家集训队] Tree II(LCT维护懒惰标记)

    点此看题面 大致题意: 有一棵初始边权全为\(1\)的树,四种操作:将两点间路径边权都加上一个数,删一条边.加一条新边,将两点间路径边权都加上一个数,询问两点间路径权值和. 序列版 这道题有一个序列版 ...

  6. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  7. 洛谷P2633 Count on a tree(主席树上树)

    题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个 ...

  8. 洛谷P2633 Count on a tree(主席树,倍增LCA)

    洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上 ...

  9. 洛谷P2633 Count on a tree(主席树,倍增LCA,树上差分)

    洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上 ...

随机推荐

  1. jwt三种方式

    package library.book.demo.config.loginconfig; import com.alibaba.fastjson.JSON; import com.sun.org.a ...

  2. 查询ES6兼容的网站

    http://kangax.github.io/compat-table/es6/ 查询es6兼容的网站

  3. TDSQL MySQL版基本原理-水平分表 读写分离 弹性扩展 强同步

    TDSQL MySQL版(TDSQL for MySQL)是部署在腾讯云上的一种支持自动水平拆分.Shared Nothing 架构的分布式数据库.TDSQL MySQL版 即业务获取的是完整的逻辑库 ...

  4. 《手把手教你》系列技巧篇(二十三)-java+ selenium自动化测试-webdriver处理浏览器多窗口切换下卷(详细教程)

    1.简介 上一篇讲解和分享了如何获取浏览器窗口的句柄,那么今天这一篇就是讲解获取后我们要做什么,就是利用获取的句柄进行浏览器窗口的切换来分别定位不同页面中的元素进行操作. 2.为什么要切换窗口? Se ...

  5. 手撕LRU缓存了解一下

    面试官:来了,老弟,LRU缓存实现一下? 我:直接LinkedHashMap就好了. 面试官:不要用现有的实现,自己实现一个. 我:..... 面试官:回去等消息吧.... 大家好,我是程序员学长,今 ...

  6. 一、自动化监控利器-Zabbix

    目录 1. 监控的作用 1.1 为何需要监控系统 1.2 监控系统的实现 1.3 常用的监控软件 2. Zabbix简介 2.1 选择Zabbix的理由 2.2 Zabbix的功能特性 3. Zabb ...

  7. VSCode——滚动鼠标控制字体大小

    第一步:找到设置 文件-->首选项-->设置 第二步:打开settings.json文件 第三步:在settings.json文件中添加 "editor.mouseWheelZo ...

  8. Selenium自动化实现web自动化-1

    框架搭建 基于maven+jdk8+junit5+seleium 构建 <dependencies> <dependency> <groupId>org.junit ...

  9. java多线程 synchronized 与lock锁 实现线程安全

    如果有多个线程在同时运行,而这些线程可能会同时运行这段代码.程序每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的. 通过卖火车票的例子 火车站要卖票,我们模 ...

  10. Spring事务管理回滚问题

    Spring事务管理不能回滚问题 在前段时间学习SpringMVC的练习中,碰到声明式事务管理时,事务不能回滚的情况,通过查看博客和资料,解决了问题. 原因 导致Spring事务管理不能回滚的原因有两 ...