P4145 上帝造题的七分钟 2 / 花神游历各国 题解
题目链接:上帝造题的七分钟2/花神游历各国
差不多的题:[Ynoi Easy Round 2023] TEST_69
注意到对某个点来说暴力单点即为反复的:\(x=\sqrt{x}\),最终为 \(1\),根据 \(master\) 主定理可知,跟 \(veb\) 树分析差不多的,复杂度为:\(O(\log{\log{V_{max}}})\)。不懂的可以去学学 这篇文章。
那么考虑到如果每个点都做有效的暴力修改,总复杂度也就 \(n\log{\log{V_{max}}}\),所以只需要解决无效修改的快速判断就行。很好想的是,\(1=\sqrt{1}\),这就是无效修改,抽象到区间上,一个区间快速判断是否不需要修改就是看这个区间是否全是 \(1\),随便咋做都行,比如维护区间最大值,判断是否是 \(1\),或者区间和是否等于区间长度。这里用区间最大值维护,判断如果不为 \(1\) 向下递归就行了,类似 \(O(n)\) 遍历修改有效位置。
参照代码
#include <bits/stdc++.h>
// #pragma GCC optimize(2)
// #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
#define isPbdsFile
#ifdef isPbdsFile
#include <bits/extc++.h>
#else
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope>
#endif
using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef __int128 i128;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用于Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
template <typename T>
int disc(T* a, int n)
{
return unique(a + 1, a + n + 1) - (a + 1);
}
template <typename T>
T lowBit(T x)
{
return x & -x;
}
template <typename T>
T Rand(T l, T r)
{
static mt19937 Rand(time(nullptr));
uniform_int_distribution<T> dis(l, r);
return dis(Rand);
}
template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
return (a % b + b) % b;
}
template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
a %= c;
T1 ans = 1;
for (; b; b >>= 1, (a *= a) %= c)if (b & 1)(ans *= a) %= c;
return modt(ans, c);
}
template <typename T>
void read(T& x)
{
x = 0;
T sign = 1;
char ch = getchar();
while (!isdigit(ch))
{
if (ch == '-')sign = -1;
ch = getchar();
}
while (isdigit(ch))
{
x = (x << 3) + (x << 1) + (ch ^ 48);
ch = getchar();
}
x *= sign;
}
template <typename T, typename... U>
void read(T& x, U&... y)
{
read(x);
read(y...);
}
template <typename T>
void write(T x)
{
if (typeid(x) == typeid(char))return;
if (x < 0)x = -x, putchar('-');
if (x > 9)write(x / 10);
putchar(x % 10 ^ 48);
}
template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
write(x), putchar(c);
write(c, y...);
}
template <typename T11, typename T22, typename T33>
struct T3
{
T11 one;
T22 tow;
T33 three;
bool operator<(const T3 other) const
{
if (one == other.one)
{
if (tow == other.tow)return three < other.three;
return tow < other.tow;
}
return one < other.one;
}
T3() { one = tow = three = 0; }
T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
{
}
};
template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
if (x < y)x = y;
}
template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
if (x > y)x = y;
}
constexpr int N = 1e5 + 10;
struct Node
{
ll mx, sum;
} node[N << 2];
#define mx(x) node[x].mx
#define sum(x) node[x].sum
inline void push_up(const int curr)
{
mx(curr) = max(mx(ls(curr)),mx(rs(curr)));
sum(curr) = sum(ls(curr)) + sum(rs(curr));
}
int n, q;
ll a[N];
inline void build(const int curr = 1, const int l = 1, const int r = n)
{
const int mid = l + r >> 1;
if (l == r)
{
sum(curr) = mx(curr) = a[l];
return;
}
build(ls(curr), l, mid);
build(rs(curr), mid + 1, r);
push_up(curr);
}
inline void update(const int curr, const int l, const int r, const int s = 1, const int e = n)
{
if (mx(curr) == 1)return;
const int mid = s + e >> 1;
if (s == e)
{
mx(curr) = sum(curr) = sqrt(sum(curr));
return;
}
if (l <= mid)update(ls(curr), l, r, s, mid);
if (r > mid)update(rs(curr), l, r, mid + 1, e);
push_up(curr);
}
inline ll query(const int curr, const int l, const int r, const int s = 1, const int e = n)
{
if (l <= s and e <= r)return sum(curr);
const int mid = s + e >> 1;
ll ans = 0;
if (l <= mid)ans += query(ls(curr), l, r, s, mid);
if (r > mid)ans += query(rs(curr), l, r, mid + 1, e);
return ans;
}
inline void solve()
{
cin >> n;
forn(i, 1, n)cin >> a[i];
build();
cin >> q;
while (q--)
{
int op, l, r;
cin >> op >> l >> r;
if (l > r)swap(l, r);
if (op == 0)update(1, l, r);
else cout << query(1, l, r) << endl;
}
}
signed int main()
{
// MyFile
Spider
//------------------------------------------------------
// clock_t start = clock();
int test = 1;
// read(test);
// cin >> test;
forn(i, 1, test)solve();
// while (cin >> n, n)solve();
// while (cin >> test)solve();
// clock_t end = clock();
// cerr << "time = " << double(end - start) / CLOCKS_PER_SEC << "s" << endl;
}
\]
P4145 上帝造题的七分钟 2 / 花神游历各国 题解的更多相关文章
- 洛谷P4145 上帝造题的七分钟2/花神游历各国 [树状数组,并查集]
题目传送门 题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是 ...
- 洛谷P4145——上帝造题的七分钟2 / 花神游历各国
题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是便有了对一段 ...
- 洛谷P4145 上帝造题的七分钟2 / 花神游历各国(重题:洛谷SP2713 GSS4 - Can you answer these queries IV)
题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是便有了对一段 ...
- 【题解】 Luogu P4145 上帝造题的七分钟2 / 花神游历各国
原题传送门 这道题实际和GSS4是一样的,只是输入方式有点区别 GSS4传送门 这道题暴力就能过qaq(这里暴力指线段树) 数据比较水 开方修改在线段树中枚举叶节点sqrt 查询区间和线段树基本操作 ...
- 洛谷 P4145 上帝造题的七分钟2 / 花神游历各国
洛谷 这题就是区间开根号,区间求和.我们可以分块做. 我们记布尔数组vis[i]表示第i块中元素是否全部为1. 因为显然当一个块中元素全部为1时,并不需要对它进行根号操作. 我们每个块暴力开根号,因为 ...
- P4145 上帝造题的七分钟2 / 花神游历各国(线段树区间开平方)
有点意思,不需要什么懒标记之类的东西,因为一个数无论怎样开平方,最后取整的结果必然会是1,所以我们不妨用最大值来维护,若区间最大值不为1,就暴力修改,否则不用管. #include<bits/s ...
- P4145 上帝造题的七分钟2 / 花神游历各国
思路 每个数不会被开方超过log次,对每个数暴力开方即可 代码 #include <algorithm> #include <cstring> #include <cst ...
- luogu P4145 上帝造题的七分钟2 / 花神游历各国 维护区间和&&区间开根号
因为开根号能使数字减小得非常快 所以开不了几次(6次?)很大的数就会变成1..... 所以我们可以维护区间最大值,若最大值>1,则继续递归子树,暴力修改叶节点,否则直接return (好像也可以 ...
- day1 晚上 P4145 上帝造题的七分钟2 / 花神游历各国 线段树
#include<iostream> #include<cstdio> #include<cmath> using namespace std; ; struct ...
- [Luogu P4145] 上帝造题的七分钟2 / 花神游历各国
题目链接 题目简要:我们需要一个能支持区间内每一个数开方以及区间求和的数据结构. 解题思路:说道区间修改区间查询,第一个想到的当然就是分块线段树.数据范围要用long long.本来我是看到区间这两个 ...
随机推荐
- AtCoder Beginner Contest 197(Sponsored by Panasonic) Person Editorial
A - Rotate 先输出第二和第三个字符,然后再输出第一个字符即可 B - Visibility 以 \((x,y)\) 作为起点向4个方向探索不是 # 的点,注意一下会在\((x,y)\)重复计 ...
- 扒一扒ProcessOn 新功能——一键编号、图形组合、左侧导航、画布水印、表格组件
思维导图.一键编号 思维导图新增 多种全新主题风格,让您的创作赏心悦目 思维导图新增 一键编号 功能 流程图.图形组合 自定义组合图形功能:新增流程图 我的图形 功能,用户可以设置或者上传自己的图形 ...
- 基于python的租房网站-房屋出租租赁系统(python+django+vue)
该项目是基于python/django/vue开发的房屋租赁系统/租房平台,作为本学期的课程作业作品.欢迎大家提出宝贵建议. 功能介绍 平台采用B/S结构,后端采用主流的Python+Django进行 ...
- Vue-自定义icon实现
在项目中引入了element-ui之后,发现其内置的icon有限,无法满足项目的需求,因此需自定义icon来实现需求. 在vue项目的components下新建SvgIcon目录,在SvgIcon目录 ...
- Redis异常问题分析黄金一分钟
Redis异常问题分析黄金一分钟 背景 同事发现一个环境redis比较卡顿,导致业务比较难以开展. 问题是下午出现的. 六点左右找到我这边. 想着帮忙看看, 问题其实没有定位完全, 仅是发现了一个可能 ...
- [转帖]GRUB2 配置文件详解
https://www.cnblogs.com/fluidog/p/15176726.html 1. GRUB2配置文件 GRUB2 的配置文件通常为 /boot/grub2/grub.cfg,虽然此 ...
- [转帖]TIKV扩容之刨坑填坑
01 背景 某tidb集群收到告警,TIKV 节点磁盘使用率85%以上,联系业务无法快速删除数据,于是想到扩容TIKV 节点,原先TIKV 节点机器都是6TB的硬盘,目前只有3TB的机器可扩,也担心r ...
- [转帖]文件操作之zip、bzip2、gzip、tar命令
文件操作之zip.bzip2.gzip.tar命令 原创 丁同学19902015-10-15 00:02:51博主文章分类:liunx基础著作权 文章标签linux tarlinux文件压缩linux ...
- 可持久化非确定状态AC自动分块维护线段平衡仙人掌优化最小费用最大流预处理混合图上莫比乌斯反演莫队带花舞蹈链并查集树状数组套主席树预处理动态DP分治FFT求多项式逆元对数函数的指数函数用可持久化并查集合并最小费用循环流上插头DP
P8946 - The Lost Symbol 这种类型的 dp 的特点就是大部分转移形如 \(f(i,j)\rightarrow f(i+1,j+1)\) 之类的,并且当以上转移出现时原数组被清空, ...
- vue组件上绑定原生事件
将原生事件绑定在组件上 .native 修饰符: 子组件 <template> <div class="demo"> <h2>我是子组件< ...