动量梯度下降法

还有一种算法叫做Momentum,或者叫做动量梯度下降法,运行速度几乎总是快于标准的梯度下降算法,简而言之,基本的想法就是计算梯度的指数加权平均数,并利用该梯度更新的权重。

例如,如果要优化成本函数,函数形状如图,红点代表最小值的位置,假设从这里(蓝色点)开始梯度下降法,如果进行梯度下降法的一次迭代,无论是batchmini-batch下降法,也许会指向这里,现在在椭圆的另一边,计算下一步梯度下降,结果或许如此,然后再计算一步,再一步,计算下去,会发现梯度下降法要很多计算步骤对吧?

慢慢摆动到最小值,这种上下波动减慢了梯度下降法的速度,就无法使用更大的学习率,如果要用较大的学习率(紫色箭头),结果可能会偏离函数的范围,为了避免摆动过大,要用一个较小的学习率。

另一个看待问题的角度是,在纵轴上,希望学习慢一点,因为不想要这些摆动,但是在横轴上,希望加快学习,希望快速从左向右移,移向最小值,移向红点。所以使用动量梯度下降法,需要做的是,在每次迭代中,确切来说在第\(t\)次迭代的过程中,会计算微分\(dW\),\(db\),会省略上标\([l]\),用现有的mini-batch计算\(dW\),\(db\)。如果用batch梯度下降法,现在的mini-batch就是全部的batch,对于batch梯度下降法的效果是一样的。如果现有的mini-batch就是整个训练集,效果也不错,要做的是计算\(v_{{dW}}= \beta v_{{dW}} + \left( 1 - \beta \right)dW\),这跟之前的计算相似,也就是\(v = \beta v + \left( 1 - \beta \right)\theta_{t}\),\(dW\)的移动平均数,接着同样地计算\(v_{db}\),\(v_{db} = \beta v_{{db}} + ( 1 - \beta){db}\),然后重新赋值权重,\(W:= W -av_{{dW}}\),同样\(b:= b - a v_{db}\),这样就可以减缓梯度下降的幅度。

例如,在上几个导数中,会发现这些纵轴上的摆动平均值接近于零,所以在纵轴方向,希望放慢一点,平均过程中,正负数相互抵消,所以平均值接近于零。但在横轴方向,所有的微分都指向横轴方向,因此横轴方向的平均值仍然较大,因此用算法几次迭代后,发现动量梯度下降法,最终纵轴方向的摆动变小了,横轴方向运动更快,因此的算法走了一条更加直接的路径,在抵达最小值的路上减少了摆动。

动量梯度下降法的一个本质,这对有些人而不是所有人有效,就是如果要最小化碗状函数,这是碗的形状,画的不太好。

它们能够最小化碗状函数,这些微分项,想象它们为从山上往下滚的一个球,提供了加速度,Momentum项相当于速度。

想象有一个碗,拿一个球,微分项给了这个球一个加速度,此时球正向山下滚,球因为加速度越滚越快,而因为\(\beta\) 稍小于1,表现出一些摩擦力,所以球不会无限加速下去,所以不像梯度下降法,每一步都独立于之前的步骤,的球可以向下滚,获得动量,可以从碗向下加速获得动量。发现这个球从碗滚下的比喻,物理能力强的人接受得比较好,但不是所有人都能接受,如果球从碗中滚下这个比喻,理解不了,别担心。

最后来看具体如何计算,算法在此。

所以有两个超参数,学习率\(a\)以及参数\(\beta\),\(\beta\)控制着指数加权平均数。\(\beta\)最常用的值是0.9,之前平均了过去十天的温度,所以现在平均了前十次迭代的梯度。实际上\(\beta\)为0.9时,效果不错,可以尝试不同的值,可以做一些超参数的研究,不过0.9是很棒的鲁棒数。那么关于偏差修正,所以要拿\(v_{dW}\)和\(v_{db}\)除以\(1-\beta^{t}\),实际上人们不这么做,因为10次迭代之后,因为的移动平均已经过了初始阶段。实际中,在使用梯度下降法或动量梯度下降法时,人们不会受到偏差修正的困扰。当然\(v_{{dW}}\)初始值是0,要注意到这是和\(dW\)拥有相同维数的零矩阵,也就是跟\(W\)拥有相同的维数,\(v_{db}\)的初始值也是向量零,所以和\(db\)拥有相同的维数,也就是和\(b\)是同一维数。

最后要说一点,如果查阅了动量梯度下降法相关资料,经常会看到一个被删除了的专业词汇,\(1-\beta\)被删除了,最后得到的是\(v_{dW}= \beta v_{{dW}} +dW\)。用紫色版本的结果就是,所以\(v_{{dW}}\)缩小了\(1-\beta\)倍,相当于乘以\(\frac{1}{1- \beta}\),所以要用梯度下降最新值的话,\(a\)要根据\(\frac{1}{1 -\beta}\)相应变化。实际上,二者效果都不错,只会影响到学习率\(a\)的最佳值。觉得这个公式用起来没有那么自然,因为有一个影响,如果最后要调整超参数\(\beta\),就会影响到\(v_{{dW}}\)和\(v_{db}\),也许还要修改学习率\(a\),所以更喜欢左边的公式,而不是删去了\(1-\beta\)的这个公式,所以更倾向于使用左边的公式,也就是有\(1-\beta\)的这个公式,但是两个公式都将\(\beta\)设置为0.9,是超参数的常见选择,只是在这两个公式中,学习率\(a\)的调整会有所不同。

所以这就是动量梯度下降法,这个算法肯定要好于没有Momentum的梯度下降算法。

神经网络优化篇:详解动量梯度下降法(Gradient descent with Momentum)的更多相关文章

  1. <反向传播(backprop)>梯度下降法gradient descent的发展历史与各版本

    梯度下降法作为一种反向传播算法最早在上世纪由geoffrey hinton等人提出并被广泛接受.最早GD由很多研究团队各自发表,可他们大多无人问津,而hinton做的研究完整表述了GD方法,同时hin ...

  2. (3)梯度下降法Gradient Descent

    梯度下降法 不是一个机器学习算法 是一种基于搜索的最优化方法 作用:最小化一个损失函数 梯度上升法:最大化一个效用函数 举个栗子 直线方程:导数代表斜率 曲线方程:导数代表切线斜率 导数可以代表方向, ...

  3. matlab实现梯度下降法(Gradient Descent)的一个例子

    在此记录使用matlab作梯度下降法(GD)求函数极值的一个例子: 问题设定: 1. 我们有一个$n$个数据点,每个数据点是一个$d$维的向量,向量组成一个data矩阵$\mathbf{X}\in \ ...

  4. 梯度下降法Gradient descent(最速下降法Steepest Descent)

    最陡下降法(steepest descent method)又称梯度下降法(英语:Gradient descent)是一个一阶最优化算法. 函数值下降最快的方向是什么?沿负梯度方向  d=−gk

  5. 梯度下降(gradient descent)算法简介

    梯度下降法是一个最优化算法,通常也称为最速下降法.最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的.最速下降法是用 ...

  6. PHP函数篇详解十进制、二进制、八进制和十六进制转换函数说明

    PHP函数篇详解十进制.二进制.八进制和十六进制转换函数说明 作者: 字体:[增加 减小] 类型:转载   中文字符编码研究系列第一期,PHP函数篇详解十进制.二进制.八进制和十六进制互相转换函数说明 ...

  7. 走向DBA[MSSQL篇] 详解游标

    原文:走向DBA[MSSQL篇] 详解游标 前篇回顾:上一篇虫子介绍了一些不常用的数据过滤方式,本篇详细介绍下游标. 概念 简单点说游标的作用就是存储一个结果集,并根据语法将这个结果集的数据逐条处理. ...

  8. Scala进阶之路-Scala函数篇详解

    Scala进阶之路-Scala函数篇详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.传值调用和传名调用 /* @author :yinzhengjie Blog:http: ...

  9. ubuntu之路——day8.2 深度学习优化算法之指数加权平均与偏差修正,以及基于指数加权移动平均法的动量梯度下降法

    首先感谢吴恩达老师的免费公开课,以下图片均来自于Andrew Ng的公开课 指数加权平均法 在统计学中被称为指数加权移动平均法,来看下面一个例子: 这是伦敦在一些天数中的气温分布图 Vt = βVt- ...

  10. 理解梯度下降法(Gradient Decent)

    1. 什么是梯度下降法?   梯度下降法(Gradient Decent)是一种常用的最优化方法,是求解无约束问题最古老也是最常用的方法之一.也被称之为最速下降法.梯度下降法在机器学习中十分常见,多用 ...

随机推荐

  1. Vue 2.x源码学习:数据响应式改造

    内容乃本人学习Vue2源码的一点笔记,若有错误还望指正. 源码版本: vue: 2.6 vue-loader: 13.x vue-template-compiler: 2.6 相关学习笔记: rend ...

  2. 哈希表(hash)

    散列表(Hash table,也叫哈希表),是根据键(Key)而直接访问在内存储存位置的数据结构.也就是说,它通过计算一个关于键值的函数,将所需查询的数据映射到表中一个位置来访问记录,这加快了查找速度 ...

  3. 平稳扩展:可支持RevenueCat每日12亿次API请求的缓存

    平稳扩展:可支持RevenueCat每日12亿次API请求的缓存 目录 平稳扩展:可支持RevenueCat每日12亿次API请求的缓存 低延迟 建立连接池 故障检测 Up and warm 对故障做 ...

  4. 【uniapp】【外包杯】学习笔记day08 | 初具雏形+后期任务

    总的来说就是BBQ了,基本上前后端都有了阶段性成果,但是问题在于是否符合我们题目的要求,所以也需要进行很详细的改动,其次就是小程序的支付功能以及登录功能1还有具体配置还是不太行. 然后下载的sprin ...

  5. 【JSOI2008】火星人 (哈希+Splay)

    题目 这种含有修改操作的就难以用后缀数组实现了,求LCP这种区间相等的类型可以想到用hash判断,同时LCP的答案大小符合二分条件可以二分求出,如果只有修改可以用线段树维护,因为还有有插入操作所以想到 ...

  6. 神经网络入门篇:详解核对矩阵的维数(Getting your matrix dimensions right)

    核对矩阵的维数 当实现深度神经网络的时候,其中一个常用的检查代码是否有错的方法就是拿出一张纸过一遍算法中矩阵的维数. \(w\)的维度是(下一层的维数,前一层的维数),即\({{w}^{[l]}}\) ...

  7. 地图选择器datav怎么使用?

    DataV 是一款基于阿里云的数据可视化产品,它提供了丰富的组件和功能,其中包括地图选择器.下面是一个详细的介绍: 1. 了解 DataV: - DataV 是一款强大的数据可视化工具,能够帮助用户将 ...

  8. h5移动端使用video实现拍照、上传文件对象、选择相册,做手机兼容。

    html部分 <template> <div class="views"> <video style="width: 100vw; heig ...

  9. transformer模型

    Transformer由谷歌团队在论文<Attention is All You Need>提出,是基于attention机制的模型,最大的特点就是全部的主体结构均为attention. ...

  10. Oracle体系机构、基本术语

    oracle实例.oracle数据库.oracle服务器,这三个术语容易混淆. oracle实例 实例是一个非固定的.基于内存基本进程和内存接口生成.当oracle服务器关闭后,实例也就消失. ora ...