【matplotlib 实战】--热力图
热力图,是一种通过对色块着色来显示数据的统计图表。
它通过使用颜色编码来表示数据的值,并在二维平面上呈现出来。
热力图通常用于显示大量数据点的密度、热点区域和趋势。
绘图时,一般较大的值由较深的颜色表示,较小的值由较浅的颜色表示;较大的值由偏暖的颜色表示,较小的值由较冷的颜色表示,等等。
热力图适合用于查看总体的情况、发现异常值、显示多个变量之间的差异,以及检测它们之间是否存在任何相关性。
1. 主要元素
热力图的主要元素如下:
- 矩形块:每个矩形块都有一个对应的位置。表示某种属性、频率、密度等。
- 颜色映射:通常使用渐变色带来表示数值的大小或密度。常见的颜色映射包括从冷色调(如蓝色)到热色调(如红色)的渐变,表示数值从低到高的变化。
- 热力密度:通过颜色的深浅来表示数据的密度或频率。较浅的颜色表示较低的密度或频率,而较深的颜色表示较高的密度或频率。
- 坐标轴:热力图通常在二维平面上显示,因此会有两个坐标轴,分别表示水平和垂直方向上的位置。

2. 适用的场景
热力图适用于以下分析场景:
- 数据密度分析:显示数据点的密度分布情况。它可以帮助用户观察数据的聚集区域和稀疏区域,从而揭示数据的分布模式和趋势。
- 热点区域识别:识别数据中的热点区域,即数据密度较高的区域。对于发现热门地区、热门产品或热门事件等具有重要意义。
- 趋势分析:通过观察颜色的变化,可以分析数据在不同区域或时间段的变化趋势。
- 空间数据分析:在地理信息系统(GIS)和位置数据分析中,可以显示地理空间上的数据分布和密度,帮助用户理解地理区域的特征和差异。
- 网站流量分析:显示用户在网页上的点击热度和浏览热度。这有助于优化网站布局、改进用户体验和提高转化率。
3. 不适用的场景
热力图在以下分析场景中可能不适用:
- 无序数据:对于无序的数据,热力图可能无法提供有意义的分析结果。
- 数据缺失:如果数据中存在大量缺失值或空白区域,可能无法准确地反映数据的密度和分布情况。
- 多个并行路径:通常用于展示单一维度的数据分布情况。如果需要同时比较多个维度或路径的数据,热力图可能不是最合适的选择。
4. 分析实战
本次分析今年上半年南京主要的几个区二手房的成交数量情况。
4.1. 数据来源
数据来自链家网南京地区的二手房成交的页面。
整理好的数据可以从下面的地址下载:
https://databook.top/lianjia/nj
各个区的二手房交易数据已经整理成csv格式。
import os
df_dict = {}
#数据解压的地址
fp = "d:/share/data/南京二手房交易"
for f in os.listdir(fp):
df = pd.read_csv(os.path.join(fp, f))
df_dict[f] = df
df_dict #合并所有区的数据
4.2. 数据清理
清理数据的主要几个步骤:
- 把
dealDate列转换为 日期(datetime)格式 - 按周统计的交易数量
- 统计结果保存到新的字典中(
df_stat),取日期最近的10条
df_stat = {}
for k, df in df_dict.items():
df["dealDate"] = pd.to_datetime(df["dealDate"])
# 最近10周的交易量
week_sum = df.resample("W", on="dealDate").name.count()
week_sum = week_sum.sort_index(ascending=False)
df_stat[k.replace(".csv", "")] = week_sum.head(10)
df_stat
4.3. 分析结果可视化
更加各个区的成交数量绘制最近10周的交易热力图。
x_labels = []
y_labels = df_stat.keys() # Y周的标签
data = []
for _, v in df_stat.items():
if len(x_labels) == 0: # X轴的日期标签
x_labels = v.index.strftime("%Y-%m-%d").tolist()
x_labels.reverse()
v = v.sort_index()
data.append(v.tolist())
plt.xticks(ticks=np.arange(len(x_labels)),
labels=x_labels,
rotation=45)
plt.yticks(ticks=np.arange(len(y_labels)),
labels=y_labels)
plt.imshow(data, cmap=plt.cm.hot_r)
plt.colorbar()
plt.show()

从热力图中可以看出,江宁区和浦口区的成交数量明显多于其他区,尤其是江宁区。
其次是鼓楼区和秦淮区稍好一些(可能和这2个区学区房比较多有关),而溧水区和六合区明显交易量不行。
【matplotlib 实战】--热力图的更多相关文章
- (转)matplotlib实战
原文:https://www.cnblogs.com/ws0751/p/8361330.html https://www.cnblogs.com/ws0751/p/8313017.html---mat ...
- matplotlib实战
plt.imshow(face_image.mean(axis=2),cmap='gray') 图片灰度处理¶ size = (m,n,3) 图片的一般形式就是这样的 rgb 0-255 jpg图 ...
- matplotlib绘制热力图
版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/jin_tmac/article/deta ...
- python学习之matplotlib实战2
import numpy as np import matplotlib.pyplot as plt def main(): #scatter fig = plt.figure() ax = fig. ...
- python学习之matplotlib实战
import numpy as np def main(): # print("hello") # line import matplotlib.pyplot as plt x = ...
- pandas补充(其二)与matplotlib补充
今日内容概要 pandas补充知识(2) matplotlib补充知识 今日内容详细 pandas补充 数据汇总 # 数据透视表 pd.pivot_table(data,values-None,ind ...
- matplotlib基本使用(矩形图、饼图、热力图、3D图)
使用matplotlib画简单的图形: #-*- coding:utf-8 -*- from numpy.random import randn import matplotlib.pyplot as ...
- 第一章:AI人工智能 の 数据预处理编程实战 Numpy, Pandas, Matplotlib, Scikit-Learn
本课主题 数据中 Independent 变量和 Dependent 变量 Python 数据预处理的三大神器:Numpy.Pandas.Matplotlib Scikit-Learn 的机器学习实战 ...
- 《机器学习实战-KNN》—如何在cmd命令提示符下运行numpy和matplotlib
问题背景:好吧,文章标题是瞎取得.平常用cmd运行python代码问题不大,我在学习<机器学习实战>这本书时,发现cmd无法运行import numpy as np以及import mat ...
- 数据可视化基础专题(十三):Matplotlib 基础(五)常用图表(三)环形图、热力图、直方图
环形图 环形图其实是另一种饼图,使用的还是上面的 pie() 这个方法,这里只需要设置一下参数 wedgeprops 即可. 例子一: import matplotlib.pyplot as plt ...
随机推荐
- Containerd组件 —— containerd-shim-runc-v2作用
1.概述 通过<浅析开源容器标准--OCI>.<浅析容器运行时>和<浅析Kubernetes CRI>这三篇博文我们了解了容器标准OCI.容器运行时以及Kubern ...
- 揭开 RocketMQ 事务消息的神秘面纱
事务消息是 RocketMQ 的高级特性之一,相信很多同学都对于其实现机制很好奇. 这篇文章,笔者会从应用场景.功能原理.实战例子.实现细节四个模块慢慢为你揭开事务消息的神秘面纱. 1 应用场景 以电 ...
- tensorflow神经网络归一化方法
参考https://blog.csdn.net/chary8088/article/details/81542879
- centOS7 磁盘扩容(2T以上)
centOS7 磁盘扩容 1.安装parted分区工具 yum install -y parted 2.查看服务器分区情况 #fdisk -l 或者 lsblk 找到新增磁盘名称 例如/dev/sdb ...
- zabbix web 打开 lastest data 显示空白,http 返回 500
问题 当在zabbix web 的 lastest data 界面上进行一个超大查询(没有限定主机)时,可能因为查询过大,超出了php-fpm进程的内存限制,而导致该界面卡住.(此后打开均无显示,F1 ...
- <学习笔记> 关于二项式反演
1 容斥原理的式子: \[|A1∪A2∪...∪An|=\sum_{1≤i≤n}|Ai|−\sum_{1≤i<j≤n}|Ai∩Aj|+...+(−1)^{n−1}×|A1∩A2∩...∩An| ...
- 跟运维学 Linux - 03
权限机制和性能指标 前面我们学完了操作文件和用户相关知识,本篇学习权限和性能相关知识. 文件的属性看起 看 linux 的权限,先从文件的属性看起 ls -l 加 -d 是只看这个文件夹: pjl@p ...
- cesium加载gif图片(cesium篇.43)
https://blog.csdn.net/QQ98281642/article/details/120214325
- 个人用C#编写的壁纸管理器 - 开源研究系列文章
今天介绍一下笔者自己用C#开发的一个小工具软件:壁纸管理器. 开发这个小工具的初衷是因为Windows操作系统提供的功能个人不满意,而且现在闲着,所以就随意写了个代码.如果对读者有借鉴参考作用就更好了 ...
- Jmeter+Ant+Jenkins接口自动化测试平台
一个完整的接口自动化测试平台需要支持接口的自动执行,自动生成测试报告,以及持续集成. Jmeter 支持接口的测试, Ant 支持自动构建,而 Jenkins 支持持续集成,所以三者组合在一起可以构成 ...