MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授。
PDF格式教材下载 Sequences and Series
本系列学习笔记PDF下载(Academia.edu) MOOCULUS-2 Solution
Summary
- Let $N > 1$ be an integer, and consider a series $\sum_{n=1}^\infty a_n$. The series we get by removing the first $N-1$ terms, namely $$\sum_{n=N}^\infty a_n$$ is called a tail of the given series.
- Let $N > 1$ be an integer. The series $$\sum_{n=1}^\infty a_n$$ converges if and only if $$\sum_{n=N}^\infty a_n$$ converges. This could be shortened to "The series converges iff a tail of the series converges," or even just to the slogan that convergence depends on the tail.
- Limit Comparison Test Suppose $a_n \geq 0$ and $b_n \geq 0$. Then if $$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0,$$ the series $\sum_{n=1}^\infty a_n$ converges if and only if $\sum_{n=1}^\infty b_n$ converges.
Examples
1. Does the series $$\sum_{n=153}^\infty \frac{1}{n^2}$$ converge?
Solution:
Yes! This series is a tail of the convergent $p$-series $$\sum_{n=1}^\infty \frac{1}{n^2}$$ in this case, $p = 2$.
2. Show that $$\sum_{n=0}^\infty {n^5\over 5^n}$$ converges.
Solution:
First, we can easily prove that $2^n > n^5$ when $n$ is sufficient large (by Mathematical Induction). Suppose that $2^n > n^5$, then when $n > 1$, we have $$(n+1)^5=n^5+5n^4+10n^3+10n^2+5n+1 < n^5+5n^4+10n^3+10n^2+6n$$ $$ < n^5+5n^4+10n^3+16n^2 < n^5+5n^4+26n^3 < n^5+31n^4$$ And thus $(n+1)^5 < 2n^5 < 2\cdot 2^n=2^{n+1}$ whenever $n > 31$. Actually we can find the minimal $n$ that $2^n > n^5$, R code:
f1 = function(x) 2^x
f2 = function(x) x^5
for (i in 2:100){
if (f1(i) > f2(i)){
print(i)
break
}
}
## [1] 23
(Note that when $n=2, 3, \cdots$, $2^n < n^5$, thus we search from $n=2$.) Back to this problem, we have $${n^5 \over 5^n} < {2^n \over 5^n}=({2\over5})^n$$ That is, the tail series $$\sum_{n=23}^{\infty}({2\over5})^n$$ converges. By the comparison test, the smalled series $$\sum_{n=23}^{\infty}{n^5 \over 5^n} $$ also converges, so does the original series $$\sum_{n=0}^\infty {n^5\over 5^n}$$
3. Does the series $$\sum_{n=52}^\infty \frac{n^4 - 3n + 5}{2n^5 + 5n^3 - n^2}$$ converges or diverge?
Solution:
By limit comparison test, set $$a_n=\frac{n^4 - 3n + 5}{2n^5 + 5n^3 - n^2},\ b_n={1\over n}$$ We have $$\lim_{n\to\infty}{a_n\over b_n}=\lim_{n\to\infty}{\frac{n^4 - 3n + 5}{2n^5 + 5n^3 - n^2}\over{1\over n}}=\lim_{n\to\infty}{n^5-3n^2+5n\over2n^5+5n^3-n^2}=\frac{1}{2} > 0$$ Thus, $\sum a_n$ and $\sum b_n$ share the same fate. But $b_n$ is harmonic series which diverges. Hence, $$\sum_{n=52}^\infty \frac{n^4 - 3n + 5}{2n^5 + 5n^3 - n^2}$$ diverges.
MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test的更多相关文章
- MOOCULUS微积分-2: 数列与级数学习笔记 Review and Final
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 7. Taylor series
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 6. Power series
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 4. Alternating series
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 3. Convergence tests
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 2. Series
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 1. Sequences
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- 《Java学习笔记(第8版)》学习指导
<Java学习笔记(第8版)>学习指导 目录 图书简况 学习指导 第一章 Java平台概论 第二章 从JDK到IDE 第三章 基础语法 第四章 认识对象 第五章 对象封装 第六章 继承与多 ...
- 20145330第五周《Java学习笔记》
20145330第五周<Java学习笔记> 这一周又是紧张的一周. 语法与继承架构 Java中所有错误都会打包为对象可以尝试try.catch代表错误的对象后做一些处理. 使用try.ca ...
随机推荐
- GridView的 OnRowDataBound 事件用法
<asp:GridView ID="RptUsers" runat="server" AutoGenerateColumns="False&qu ...
- android中的图片处理
大图片处理 大图片处理是将原来像素高的转换为像素低的图片,比如原来图片是1024*768的,而手机屏幕是800*600的,这时候就需要进行转换.转换的方式很简单就是等比例缩放. package xid ...
- RHEL7挂载ISO做本地yum
测试环境,网络yum源没有本地yum源下载速度快!Yum比起RPM装包的好处就是可以自己处理依赖关系,也就是自己安装相关的依赖包,用起来也是很方便,但是删包的时候也会删除依赖包,这里要非常小心 01. ...
- 前端构建工具 webpack
一.自我初级认知 (是什么? 能干什么,有卵用? 有选择为什么要选你?(比较优势在哪) ) 适合的才是最好的 模块打包器(module bundler) 根据项目 ...
- JS是按值传递还是按引用传递
按值传递(call by value)是最常用的求值策略:函数的形参是被调用时所传实参的副本.修改形参的值并不会影响实参. 按引用传递(call by reference)时,函数的形参接收实参的隐式 ...
- CSS选择器优先级排列
CSS选择器的效率从高到低做了一个排序: 1.id选择器(#myid) 2.类选择器(.myclassname) 3.标签选择器(div,h1,p) 4.相邻选择器(h1+p) 5.子选择器(ul & ...
- 【BZOJ 1492】【NOI 2007】货币兑换Cash
这是道CDQ分治的例题: $O(n^2)$的DP: f [1]←S* Rate[1] / (A[1] * Rate[1] + B[1]) Ans←SFor i ← 2 to n For j ←1 to ...
- Elasticsearch静态集群配置
这两天需要将ELK中的单节点运行的ES扩展为双节点,查询了下集群配置,百度搜索结果还是一如既往的坑,基本都是各种转帖,以下记录配置静态集群的步骤: * * * <pre><code& ...
- 字符串String: 常量池
2.1 String类 String是不可变类, 即一旦一个String对象被创建, 包含在这个对象中的字符序列是不可改变的, 直至该对象被销毁. String类是final类,不能 ...
- HTTP协议学习--- (十一)理解HTTP幂等性
在httpcomponent 文档中看到如下段落: 1.4.1. HTTP transport safety It is important to understand that the HTTP p ...