MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授。
PDF格式教材下载 Sequences and Series
本系列学习笔记PDF下载(Academia.edu) MOOCULUS-2 Solution
Summary
- Let $N > 1$ be an integer, and consider a series $\sum_{n=1}^\infty a_n$. The series we get by removing the first $N-1$ terms, namely $$\sum_{n=N}^\infty a_n$$ is called a tail of the given series.
- Let $N > 1$ be an integer. The series $$\sum_{n=1}^\infty a_n$$ converges if and only if $$\sum_{n=N}^\infty a_n$$ converges. This could be shortened to "The series converges iff a tail of the series converges," or even just to the slogan that convergence depends on the tail.
- Limit Comparison Test Suppose $a_n \geq 0$ and $b_n \geq 0$. Then if $$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0,$$ the series $\sum_{n=1}^\infty a_n$ converges if and only if $\sum_{n=1}^\infty b_n$ converges.
Examples
1. Does the series $$\sum_{n=153}^\infty \frac{1}{n^2}$$ converge?
Solution:
Yes! This series is a tail of the convergent $p$-series $$\sum_{n=1}^\infty \frac{1}{n^2}$$ in this case, $p = 2$.
2. Show that $$\sum_{n=0}^\infty {n^5\over 5^n}$$ converges.
Solution:
First, we can easily prove that $2^n > n^5$ when $n$ is sufficient large (by Mathematical Induction). Suppose that $2^n > n^5$, then when $n > 1$, we have $$(n+1)^5=n^5+5n^4+10n^3+10n^2+5n+1 < n^5+5n^4+10n^3+10n^2+6n$$ $$ < n^5+5n^4+10n^3+16n^2 < n^5+5n^4+26n^3 < n^5+31n^4$$ And thus $(n+1)^5 < 2n^5 < 2\cdot 2^n=2^{n+1}$ whenever $n > 31$. Actually we can find the minimal $n$ that $2^n > n^5$, R code:
f1 = function(x) 2^x
f2 = function(x) x^5
for (i in 2:100){
if (f1(i) > f2(i)){
print(i)
break
}
}
## [1] 23
(Note that when $n=2, 3, \cdots$, $2^n < n^5$, thus we search from $n=2$.) Back to this problem, we have $${n^5 \over 5^n} < {2^n \over 5^n}=({2\over5})^n$$ That is, the tail series $$\sum_{n=23}^{\infty}({2\over5})^n$$ converges. By the comparison test, the smalled series $$\sum_{n=23}^{\infty}{n^5 \over 5^n} $$ also converges, so does the original series $$\sum_{n=0}^\infty {n^5\over 5^n}$$
3. Does the series $$\sum_{n=52}^\infty \frac{n^4 - 3n + 5}{2n^5 + 5n^3 - n^2}$$ converges or diverge?
Solution:
By limit comparison test, set $$a_n=\frac{n^4 - 3n + 5}{2n^5 + 5n^3 - n^2},\ b_n={1\over n}$$ We have $$\lim_{n\to\infty}{a_n\over b_n}=\lim_{n\to\infty}{\frac{n^4 - 3n + 5}{2n^5 + 5n^3 - n^2}\over{1\over n}}=\lim_{n\to\infty}{n^5-3n^2+5n\over2n^5+5n^3-n^2}=\frac{1}{2} > 0$$ Thus, $\sum a_n$ and $\sum b_n$ share the same fate. But $b_n$ is harmonic series which diverges. Hence, $$\sum_{n=52}^\infty \frac{n^4 - 3n + 5}{2n^5 + 5n^3 - n^2}$$ diverges.
MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test的更多相关文章
- MOOCULUS微积分-2: 数列与级数学习笔记 Review and Final
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 7. Taylor series
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 6. Power series
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 4. Alternating series
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 3. Convergence tests
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 2. Series
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 1. Sequences
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- 《Java学习笔记(第8版)》学习指导
<Java学习笔记(第8版)>学习指导 目录 图书简况 学习指导 第一章 Java平台概论 第二章 从JDK到IDE 第三章 基础语法 第四章 认识对象 第五章 对象封装 第六章 继承与多 ...
- 20145330第五周《Java学习笔记》
20145330第五周<Java学习笔记> 这一周又是紧张的一周. 语法与继承架构 Java中所有错误都会打包为对象可以尝试try.catch代表错误的对象后做一些处理. 使用try.ca ...
随机推荐
- KMS10流氓软件
win10想激活,结果中了流氓软件的当... (关键是win10家庭单语言版居然还激活不了....白吃亏了) 把我的chrome 和 firefox 主页改成hao.qquu8.com,该网址重定向到 ...
- PRML读书会第七章 Sparse Kernel Machines(支持向量机, support vector machine ,KKT条件,RVM)
主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:59:22 大家好,今天一起交流下PRML第7章.第六章核函数里提到,有一类机器学习算法,不是对参数做点估计或求其分 ...
- DOM 概况
DOM(文档对象模型)是针对 HTML 和 XML 文档的一个API(应用程序编程接口).DOM 描绘了一个层次化的节点树,允许开发人员添加.移除和修改页面的某一部分. 层次节点 DOM可以将任何 H ...
- 让 Generator 自启动
文章同步自个人博客:http://www.52cik.com/2016/07/11/generator-co.html 此前只是简单使用而没有真正的去研究 Generator,这次要好好折腾下这货. ...
- 从.NET的宠物商店到Android MVC MVP
1 一些闲话 记得刚进公司的时候,我们除了做常规的Training Project外,每天还要上课,接受各种技术培训和公司业务介绍.当时第一次知道QA和SQA的区别.Training Project时 ...
- JavaScript的理解记录(2)
一.表达式与运算符: 1.对于属性访问表达式: var arr = {first:"hh","second":"gg",third:null ...
- SqlServer——批量操作(批量添加,删除)
批量添加数据: 一条insert语句批量插入多条记录 常见的insert语句,向数据库中,一条语句只能插入一条数据: insert into persons (id_p, lastname , fir ...
- MVC认知路【点点滴滴支离破碎】【五】----form表单上传单个文件
//个人理解:前台一个form加input[type='file'],在加一个submit的按钮 主要设置form的action,method,enctype='multipart/form-data ...
- 第十五章:输入和输出(I/O)
一:流分类 抽象基类:InputStream和Reader 抽象类不能用于创建模板哦! OutputStream和Writer 方向: 以内存为中心! 输入流(读) 输出流(写) 数据 ...
- display~