【bzoj3160】万径人踪灭 FFT
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3160
我是一个傻叉 微笑脸
#include<bits/stdc++.h>
#define inf 1000000000
#define ll long long
#define N 200005
#define mod 1000000007
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct CD{
double x,y;
CD(double a=,double b=){x=a;y=b;}
friend CD operator + (CD n1,CD n2){return CD(n1.x+n2.x,n1.y+n2.y);}
friend CD operator - (CD n1,CD n2){return CD(n1.x-n2.x,n1.y-n2.y);}
friend CD operator * (CD n1,CD n2){return CD(n1.x*n2.x-n1.y*n2.y,n1.x*n2.y+n1.y*n2.x);}
};
const double Pi=acos(-1.0);
int bit,n,nn,ans,m,mx,id,p[N<<];
char s[N],st[N<<];
CD a[N<<],b[N<<];
void FFT(CD *a,int n,int type){
for(int i=,j=;i<n;i++) {
if(j>i)swap(a[i],a[j]);
int k=n;
while(j&(k >>= ))j&=~k;
j|=k;
}
for(int i=;i<=bit;i++){
CD w_n(cos(*type*Pi/(<<i)),sin(*type*Pi/(<<i)));
for(int j=;j<n;j+=(<<i)){
CD w(,);
for(int k=j;k<j+(<<(i-));k++){
CD tmp=a[k],tt=w*a[k+(<<(i-))];
a[k]=tmp+tt;
a[k+(<<(i-))]=tmp-tt;
w=w*w_n;
}
}
}
if(type<)for(int i=;i<n;i++)a[i].x/=n;
}
int main(){
scanf("%s",s);
n=strlen(s);nn=n;
bit=;
while((<<bit)<(n<<))bit++;
n=<<bit;
for(int i=nn;i<n;i++)a[i]=b[i]=CD(,);
for(int i=;i<nn;i++)if(s[i]=='a')a[i]=CD(,);
FFT(a,n,);
for(int i=;i<n;i++)a[i]=a[i]*a[i];
FFT(a,n,-); for(int i=;i<nn;i++)if(s[i]=='b')b[i]=CD(,);
FFT(b,n,);
for(int i=;i<n;i++)b[i]=b[i]*b[i];
FFT(b,n,-); for(int i=;i<n;i++){
int x=round(a[i].x+b[i].x);
x=(x+)/;
ans=(ans+(<<x)-)%mod;
} m=nn<<|;
for(int i=;i<nn;i++)st[(i+)<<]=s[i];
mx=id=;
for(int i=;i<=m;i++){
if(mx>i)p[i]=min(p[*id-i],mx-i);else p[i]=;
while(i-p[i]->&&i+p[i]+<=m&&st[i-p[i]-]==st[i+p[i]+])p[i]++;
if(i+p[i]>mx)mx=i+p[i],id=i;
ans=((ans-(p[i]+)/)%mod+mod)%mod;
}
printf("%d\n",ans);
return ;
}
【bzoj3160】万径人踪灭 FFT的更多相关文章
- BZOJ3160:万径人踪灭(FFT,Manacher)
Solution $ans=$回文子序列$-$回文子串的数目. 后者可以用$manacher$直接求. 前者设$f[i]$表示以$i$为中心的对称的字母对数. 那么回文子序列的数量也就是$\sum_{ ...
- BZOJ3160 万径人踪灭 字符串 多项式 Manachar FFT
原文链接http://www.cnblogs.com/zhouzhendong/p/8810140.html 题目传送门 - BZOJ3160 题意 给你一个只含$a,b$的字符串,让你选择一个子序列 ...
- BZOJ3160 万径人踪灭(FFT+manacher)
容易想到先统计回文串数量,这样就去掉了不连续的限制,变为统计回文序列数量. 显然以某个位置为对称轴的回文序列数量就是2其两边(包括自身)对称相等的位置数量-1.对称有啥性质?位置和相等.这不就是卷积嘛 ...
- BZOJ3160 万径人踪灭 【fft + manacher】
题解 此题略神QAQ orz po神牛 由题我们知道我们要求出: 回文子序列数 - 连续回文子串数 我们记为ans1和ans2 ans2可以用马拉车轻松解出,这里就不赘述了 问题是ans1 我们设\( ...
- BZOJ3160: 万径人踪灭(FFT,回文自动机)
BZOJ传送门: 解题思路: FFT在处理卷积时可以将自己与自己卷,在某一种字母上标1其他标0,做字符集次就好了. (回文就是直接对称可以联系偶函数定义理解,根据这个性质就可以将字符串反向实现字符串匹 ...
- [bzoj3160]万径人踪灭_FFT_Manacher
万径人踪灭 bzoj-3160 题目大意:给定一个ab串.求所有的子序列满足:位置和字符都关于某条对称轴对称而且不连续. 注释:$1\le n\le 10^5$. 想法: 看了大爷的题解,OrzOrz ...
- BZOJ 3160: 万径人踪灭 [fft manacher]
3160: 万径人踪灭 题意:求一个序列有多少不连续的回文子序列 一开始zz了直接用\(2^{r_i}-1\) 总-回文子串 后者用manacher处理 前者,考虑回文有两种对称形式(以元素/缝隙作为 ...
- bzoj 3160 万径人踪灭 FFT
万径人踪灭 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1936 Solved: 1076[Submit][Status][Discuss] De ...
- BZOJ 3160: 万径人踪灭 FFT+快速幂+manacher
BZOJ 3160: 万径人踪灭 题目传送门 [题目大意] 给定一个长度为n的01串,求有多少个回文子序列? 回文子序列是指从原串中找出任意个,使得构成一个回文串,并且位置也是沿某一对称轴对称. 假如 ...
随机推荐
- java中文乱码解决方法汇总
public static void main(String[] argv){ try { System.out.println(“中文”);//1 ...
- 序列化悍将Protobuf-Net,入门动手实录
最近在研究web api 2,看了一篇文章,讲解如何提升性能的, 在序列化速度的跑分中,Protobuf一骑绝尘,序列化速度快,性能强,体积小,所以打算了解下这个利器 1:安装篇 谷歌官方没有提供.n ...
- 1-01Sql Sever 2008的安装
Sql Sever 2008对计算机的配置要求: 1:处理器:最低1.4Ghz的处理器,建议使用2.0GHz或更高的处理器 . 2:内存:最小512MB, 建议使用1GB或更高的处理器. 3:磁盘容 ...
- 【leetcode】Sqrt(x)
题目描述: Implement int sqrt(int x). Compute and return the square root of x. 实现开根号,并且返回整数值(这个很重要,不是整数的话 ...
- pthread_create传递参数
转自:http://blog.csdn.net/yeyuangen/article/details/6757525 #include <iostream> #include <pth ...
- Windows+Git+TortoiseGit+COPSSH 安装图文教程
转自:http://blog.csdn.net/aaron_luchen/article/details/10498181 准备工作: 1. Git-1.8.1.2-preview20130201.e ...
- 遍历windows驱动
驱动都存在 \\Driver 或者 \\FileSystem 目录对象里 我们只需要遍历这两个目录就可以遍历windows所有驱动 知识点 \\Driver \\FileSystem (dt _OB ...
- Emacs 之列编辑模式
// */ // ]]> Emacs 之 列编辑模式 Table of Contents 1. Emacs 下列编辑模式常用命令 2. 可以参考 1 Emacs 下列编辑模式常用命令 先mark ...
- How to AC it
旋转卡壳 DP,网络流
- hdu 5306 优先队列
用到优先队列 #include<iostream> #include<string> #include<algorithm> #include<cstdio& ...