MT【315】勾股数
(高考压轴题)证明以下命题:
(1)对任意正整数$a$都存在正整数$b,c(b<c)$,使得$a^2,b^2,c^2$成等差数列.
(2)存在无穷多个互不相似的三角形$\Delta_n$,其边长$a_n,b_n,c_n$为正整数,且$a_n^2,b_n^2,c_n^2$成等差数列

解答:
(1)$2b^2=a^2+c^2$令$x=\dfrac{c}{a},y=\dfrac{b}{a}$ 得$x^2-2y^2=-1$得该不定方程的解$(7,5)$
故对任意正整数$a$存在正整数$b=7a,c=5a$使得$a^2,b^2,c^2$成等差数列.
(2)$a_n^2+c_n^2=2b_n^2$注意到$\left(\dfrac{a_n+c_n}{2}\right)^2+\left(\dfrac{a_n-c_n}{2}\right)^2=b_n^2$
故由勾股数的通解得$\dfrac{a_n+c_n}{2}=p^2-q^2,\dfrac{a_n-c_n}{2}=2pq,b_n=p^2+q^2$,
考虑到两边之和大于第三边令$p=n,q=1(n\ge5,n\in N)$得$a_n=n^2+2n-1,c_n=n^2-2n-1,b_n=n^2+1$
又此时$2b_n-a_n-c_n=4$,且$a_n,b_n,c_n$随$n$增大而增大,故三角形$\Delta_n$互不相似.
注:$x^2-2y^2=-1$的解的背景涉及佩尔方程.
MT【315】勾股数的更多相关文章
- hdu 6441 (费马大定理+勾股数 数学)
题意是给定 n 和 a,问是否存在正整数 b,c 满足:a^n + b^n == c^n.输出 b c,若不存在满足条件的 b,c,输出 -1 -1. 当 n > 2 时,由费马大定理,不存在 ...
- C语言 · 勾股数
勾股数 勾股定理,西方称为毕达哥拉斯定理,它所对应的三角形现在称为:直角三角形. 已知直角三角形的斜边是某个整数,并且要求另外两条边也必须是整数. 求满足这个条件的不同直角三角形的个数. [数据格式] ...
- 猜想:一组勾股数a^2+b^2=c^2中,a,b之一必为4的倍数。
证明: 勾股数可以写成如下形式 a=m2-n2 b=2mn c=m2+n2 而m,n按奇偶分又以下四种情况 m n 奇 偶 ① 偶 奇 ② 偶 偶 ③ 奇 奇 ④ 上面①②③三种情况中,mn中存在至少 ...
- 不用一个判断,用JS直接输出勾股数
说明: 这里勾股数是符合a2+b2=c2的整数,比如32+42=52,52+122=132,怎么把符合条件的勾股数找出来呢?用代数替代的方法可以极大简化程序,直至一个判断都不用. 可以设a=m2-n2 ...
- 2018中国大学生程序设计竞赛 - 网络选拔赛 4 - Find Integer 【费马大定理+构造勾股数】
Find Integer Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Tota ...
- 勾股数--Python
勾股数:勾股数又名毕氏三元数 .勾股数就是可以构成一个直角三角形三边的一组正整数.勾股定理:直角三角形两条直角边a.b的平方和等于斜边c的平方(a²+b²=c²) 要求:输出1000以内的勾股数 fr ...
- hdu6441 Find Integer 求勾股数 费马大定理
题目传送门 题目大意: 给出a和n,求满足的b和c. 思路: 数论题目,没什么好说的. 根据费马大定理,当n>2时不存在正整数解. 当n=0或者1时特判一下就可以了,也就是此时变成了一个求勾股数 ...
- hdu 6441 Find Integer(费马大定理+勾股数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6441(本题来源于2018年中国大学生程序设计竞赛网络选拔赛) 题意:输入n和a,求满足等式a^n+b^ ...
- HDU 6441 费马大定理+勾股数
#include <bits/stdc++.h> #define pb push_back #define mp make_pair #define fi first #define se ...
随机推荐
- JQuery显示,隐藏和淡入淡出效果
为了把JQuery搞熟悉,看着菜鸟教程,一个一个例子打,边看边记,算是一晚上的一个小总结吧.加油,我很本但是我很勤奋啊.系统的了解它,就要花时间咯. <!DOCTYPE html> < ...
- 轨迹系列7——Socket总结及实现基于TCP或UDP的809协议方法
文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1.背景 在上一篇博客中我详细介绍了809协议的内容.809协议规范了通 ...
- 总结:当静态路由和BGP同时存在时路由优选BGP的两种方法
结论: 方法一.配置BGP协议的外部优先级比静态路由的优先级高,优选BGP. 优点:配置简单. 缺点:全局生效,如果用户有针对某个静态路由想提高优先级,不受动态路由影响,则针对每个静态路由都需要人为提 ...
- vue中input输入框的模糊查询实现
最近在使用vue写webapp在,一些感觉比较有意思的分享一下. 1:input输入框: <input class="s-search-text" placeholder=& ...
- TCP/IP、UDP、HTTP、SOCKET详解
文章大纲 网络OSI七层及各层作用 TCP与UDP基本介绍 TCP连接过程详解 SOCKET原理与连接详解 一.网络OSI七层及各层作用 应用层:文件传输,电子邮件,文件服务,虚拟终端 T ...
- nodejs 使用 js 模块
nodejs 使用 js 模块 Intro 最近需要用 nodejs 做一个爬虫,Google 有一个 Puppeteer 的项目,可以用它来做爬虫,有关 Puppeteer 的介绍网上也有很多,在这 ...
- JavaScript中的闭包和作用域链
这部分几乎是JavaScript中最难的部分,也是面试官最爱问的地方. 下面的内容是我以前写的<JavaScript学习手册>中被客户删除的部分,理由听起来有点诡异:太难.
- 浅谈TCP IP协议栈(一)入门知识【转】
说来惭愧,打算写关于网络方面的知识很久了,结果到今天才正式动笔,好了,废话不多说,写一些自己能看懂的入门知识,对自己来说是一种知识的总结,也希望能帮到一些想了解网络知识的童鞋. 万事开头难,然后中间难 ...
- spring boot 中使用 jpa以及jpa介绍
1.什么是jpa呢?JPA顾名思义就是Java Persistence API的意思,是JDK 5.0注解或XML描述对象-关系表的映射关系,并将运行期的实体对象持久化到数据库中.12.jpa具有什么 ...
- 详解 CORS跨域的几种不同实现方式
CORS 定义 CORS是一个W3C标准,全称是"跨域资源共享"(Cross-origin resource sharing),它允许浏览器向跨源服务器,发出XMLHttpRequ ...