(高考压轴题)证明以下命题:
(1)对任意正整数$a$都存在正整数$b,c(b<c)$,使得$a^2,b^2,c^2$成等差数列.
(2)存在无穷多个互不相似的三角形$\Delta_n$,其边长$a_n,b_n,c_n$为正整数,且$a_n^2,b_n^2,c_n^2$成等差数列


解答:
(1)$2b^2=a^2+c^2$令$x=\dfrac{c}{a},y=\dfrac{b}{a}$ 得$x^2-2y^2=-1$得该不定方程的解$(7,5)$
故对任意正整数$a$存在正整数$b=7a,c=5a$使得$a^2,b^2,c^2$成等差数列.
(2)$a_n^2+c_n^2=2b_n^2$注意到$\left(\dfrac{a_n+c_n}{2}\right)^2+\left(\dfrac{a_n-c_n}{2}\right)^2=b_n^2$
故由勾股数的通解得$\dfrac{a_n+c_n}{2}=p^2-q^2,\dfrac{a_n-c_n}{2}=2pq,b_n=p^2+q^2$,
考虑到两边之和大于第三边令$p=n,q=1(n\ge5,n\in N)$得$a_n=n^2+2n-1,c_n=n^2-2n-1,b_n=n^2+1$
又此时$2b_n-a_n-c_n=4$,且$a_n,b_n,c_n$随$n$增大而增大,故三角形$\Delta_n$互不相似.

注:$x^2-2y^2=-1$的解的背景涉及佩尔方程.

MT【315】勾股数的更多相关文章

  1. hdu 6441 (费马大定理+勾股数 数学)

    题意是给定 n 和 a,问是否存在正整数 b,c 满足:a^n + b^n == c^n.输出 b  c,若不存在满足条件的 b,c,输出 -1 -1. 当 n > 2 时,由费马大定理,不存在 ...

  2. C语言 · 勾股数

    勾股数 勾股定理,西方称为毕达哥拉斯定理,它所对应的三角形现在称为:直角三角形. 已知直角三角形的斜边是某个整数,并且要求另外两条边也必须是整数. 求满足这个条件的不同直角三角形的个数. [数据格式] ...

  3. 猜想:一组勾股数a^2+b^2=c^2中,a,b之一必为4的倍数。

    证明: 勾股数可以写成如下形式 a=m2-n2 b=2mn c=m2+n2 而m,n按奇偶分又以下四种情况 m n 奇 偶 ① 偶 奇 ② 偶 偶 ③ 奇 奇 ④ 上面①②③三种情况中,mn中存在至少 ...

  4. 不用一个判断,用JS直接输出勾股数

    说明: 这里勾股数是符合a2+b2=c2的整数,比如32+42=52,52+122=132,怎么把符合条件的勾股数找出来呢?用代数替代的方法可以极大简化程序,直至一个判断都不用. 可以设a=m2-n2 ...

  5. 2018中国大学生程序设计竞赛 - 网络选拔赛 4 - Find Integer 【费马大定理+构造勾股数】

    Find Integer Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

  6. 勾股数--Python

    勾股数:勾股数又名毕氏三元数 .勾股数就是可以构成一个直角三角形三边的一组正整数.勾股定理:直角三角形两条直角边a.b的平方和等于斜边c的平方(a²+b²=c²) 要求:输出1000以内的勾股数 fr ...

  7. hdu6441 Find Integer 求勾股数 费马大定理

    题目传送门 题目大意: 给出a和n,求满足的b和c. 思路: 数论题目,没什么好说的. 根据费马大定理,当n>2时不存在正整数解. 当n=0或者1时特判一下就可以了,也就是此时变成了一个求勾股数 ...

  8. hdu 6441 Find Integer(费马大定理+勾股数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6441(本题来源于2018年中国大学生程序设计竞赛网络选拔赛) 题意:输入n和a,求满足等式a^n+b^ ...

  9. HDU 6441 费马大定理+勾股数

    #include <bits/stdc++.h> #define pb push_back #define mp make_pair #define fi first #define se ...

随机推荐

  1. SQL语句中不同的连接JOIN

    为了从两个表中获取数据,我们有时会用JOIN将两个表连接起来.通常有以下几种连接方式: JOIN  or  INNER JOIN(内连接) : 这两个是相同的,要求两边表同时有对应的数据,返回行,任何 ...

  2. 高德地图 Service 创建服务 USERKEY_PLAT_NOMATCH

    在使用高的地图 创建服务的时候 { "errmsg": "USERKEY_PLAT_NOMATCH", "errcode": 10009, ...

  3. Java多线程与并发相关问题

    1.什么是线程? 2.线程和进程有什么区别? 3.如何在Java中实现线程? 4.Java关键字volatile与synchronized作用与区别? volatile修饰的变量不保留拷贝,直接访问主 ...

  4. 7 Best Free RAR Password Unlocker Software For Windows

    Here is the list of Best Free RAR Password Unlocker Software for Windows. These software run differe ...

  5. Django REST framework框架介绍和基本使用

    Django REST framework介绍 Django REST framework是基于Django实现的一个RESTful风格API框架,能够帮助我们快速开发RESTful风格的API. 官 ...

  6. TCP/IP及内核参数优化调优

    Linux下TCP/IP及内核参数优化有多种方式,参数配置得当可以大大提高系统的性能,也可以根据特定场景进行专门的优化,如TIME_WAIT过高,DDOS攻击等等.如下配置是写在sysctl.conf ...

  7. TortoiseGit之配置密钥

    TortoiseGit 使用扩展名为ppk的密钥,而不是ssh-keygen生成的rsa密钥.使用命令ssh-keygen -C "邮箱地址" -t rsa产生的密钥在Tortoi ...

  8. koa 中间件

    什么是 Koa 的中间件 通俗的讲:中间件就是匹配路由之前或者匹配路由完成做的一系列的操作,我们就可以 把它叫做中间件. 在express中间件(Middleware)是一个函数,它可以访问请求对象( ...

  9. Node、TS、Koa学习笔记

    这样定义可以轻松拿到gender属性 这样定义,函数内显示没有gender 这种方法能得到gender但是函数内部没有gender 这种方式能到gender 但是在函数里施symbel属性,外部不能访 ...

  10. 深入理解 path-to-regexp.js 及源码分析

    阅读目录 一:path-to-regexp.js 源码分析如下: 二:pathToRegexp 的方法使用 回到顶部 一:path-to-regexp.js 源码分析如下: 我们在vue-router ...