Ceres Solver 入门稍微多一点
其实ceres solver用了挺多的,可能是入门不精,有时候感觉感觉不理解代码上是怎么实现的,这次就通过ceres的官网仔细看了一些介绍,感觉对cpp了解更好了一些。
跟g2o的比较的话,感觉ceres solver是一个更通用的非线性优化器,g2o是更加针对SLAM的开发。比如g2o对一个outlier有函数借口,我了解的ceres里就只能在计算error搞一搞了。
本来以为只有ceres提供了autodiff,后来被告之g2o也有了,那感觉ceres也没这么有优势了。不过真的要落地的肯定都要自己写的,前期开发的话,大家哪个熟用哪个呗。
Ceres
Ceres solver consists of two parts:
- a modeling API construct an optimization problem one term at a time.
- a solver API that controls the minimization algorithm.
Cost Function
which is responsible for computing a vector of residuals and Jacobian matrices.
class CostFunction {
public:
virtual bool Evaluate(double const* const parameters, double* residuals, double** jacobians) = 0;
const vector<int32>& parameter_block_sizes();
int num_residuals() const;
protected:
vector<int32>* mutable_parameter_block_sizes();
void set_num_residuals(int num_residuals);
};
CostFunction::parameter_block_sizes and CostFunction::num_residuals_ would be set by Problem when using Problem::AddResidualBlock().
bool CostFunction::Evaluate
parameters is an array of arrays of size x and parameters[i] is an array of size xx.
parameters is never NULL.
residuals is an array of size xxx.
residuals is never NULL.
jacobian is an array of arrays of size xxxx.
if jacobian is NULL, the user is only expected to compute the residuals.
jacobian is a row-major array. of residuam_num * parameter_block_size
If jacobian[i] is NULL, then this computation can be skipped. This is the case when the corresponding parameter block is markded constant.
SizedCostFunction
If the size of the parameter block and the size of the residual vector is known at compile time(常规场景).
The user only needs to implement CostFunction::Evaluate().
// 模板参数
template<int kNumResiduals, int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0,
int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0>
class SizedCostFUnction: public CostFunction {
public:
virtual bool Evalute(double const* const* parameters,
double* residuals,
double** jacobians) const = 0;
};
AutoDiffCostFunction
template <typename CostFunctor,
int kNumResiduals, int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0,
int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0>
class AutoDiffCostFunction : public SizedCostFunction<kNumResiduals, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9> {
public:
explicit AutoDiffCostFunction(CostFunctor* functor);
AutoDiffCostFunction(CostFunctor* functor, int num_residuals);
};
To get an auto differentiated cost function, you must define a class(functor) with a templated operator() (a functor) that computes the cost function in terms of the template parameter T.
The function must write the computed value in the last argument( the only non-const one) and return true to indicate success. (咋搞的??)
For example $ e=k - x^Ty $, the actual cost added to the total problem is e^2 while the squaring is implicitly done by the optimization framework.
class MyScalarCostFunctor {
public:
MyScalarCostFunctor(double k) : k_(k) {}
template <typename T>
bool operator()(const T* const x, const T* const y, T* e) const {
e[0] = k_ - x[0] * y[0] - x[1] * y[1];
return true;
}
private:
double k_;
};
class definition is shown as below:
CostFunction* cost_function = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>(new MyScalarCostFUnctor(1.0));
// the sequence is: Dimension of residuals, of x and of y.
AutoDiffCostFunction also supports cost functions with a runtime-determined number of residuals. 这里用了第二个AutoDiffCostFunction的第二个构造函数AutoDiffCostFunction(CostFunctor*, int).
e.g.
CostFunction* cost_function
= new AutoDiffCostFunction<MyScalarCostFunctor, DYNAMIC, 2, 2>(
new CostFunctiorWithDynamicNumResiduals(1.0),
runtime_number_of_residuals);
The framework can currently accommodate cost functions of up to 10 independent variables, and there is no limit on the dimensionality of each of them.
DynamicAutoDiffCostFunction
It requires that the number of parameter blocks and their sizes be known at compile time. It also has an upper limit of 10 parameter blocks.
template <typename CostFunctor, int Stride = 4>
class DynamicAutoDiffCostFunction : public CostFunction {};
The functor signature is a bit different.
struct MyCostFunctor {
template<typename T>
bool operator() (T const* const * parameters, T* residuals) const {
}
}
这玩意反正不太好用。
NumericDiffCostFunction
有时候不能定义一个cost functor, 用这玩意。
template <typename CostFunctor, NumericDiffMethodType method = CENTRAL, int kNumResiduals, int N0, int N1 = 0> // 当然后还有8个
class NumericDIffCostFunction : public SizedCostFunction<kNumResiduals, N0, N1> {}
在ceres中有三种numeric differentiation的方式,FORWARD, CENTRAL, RIDDERS.
如果你的parameter block是在一个流行上的,numerical differentiation可能会有问题,因为这个方式只是扰动parameter block中单个coordinate,这也就表示我们认为parameter block在欧式空间里而忽视了流行的structure。
e.g. Pertubing the coordiantes of a unit quaternion will vilate the unit norm property of the parameter block.
解决这个问题需要让NumericDiffCostFunction意识到LocalParameterization.
一般来说,我们推荐使用AutoDiffCostFunction而非NumericDiffCostFunction,因为在cpp模板类使得自动微分非常有效,而采用数值微分却划不来,由于其数值误差会使得收敛变慢。(反正auto就是用了很吊的扫操作牛逼就行了)
DynamicNumericDiffCostFunction
template <typename CostFunctor, NumericDiffMethodType method = CENTRAL>
class DynamicNumericDiffCostFunction : public CostFunction {
};
NormalPrior
class NormalPrior : public CostFunction {
public:
// 保证b中的行数和A的列数一样
NormalPrior(const Matrix& A, const Vector& b);
virtual bool Evalute(double const* const parameters, double* residuals, double** jacobians) const;
};
LossFunction
class LossFunction {
public:
virtual void Evaluete(double s, double out[3]) const = 0;
};
LocalParameterization
class LocalParameterization {
public:
virtual ~LocalParameterization() {}
virtual bool Plus(const double* x, const double* delta, double* x_plus_delta) const = 0;
virtual bool ComputeJacobian(const double* x, double* jacobian) const = 0;
//...
}
class IdentityParameterization
加法定义和一般的一样 Plus(x, delta x) = x + delta x
class QuaternionParameterization
class EigenQuaternionParameterization
Eigen存储quaternion的方式不同,是[x, y, z, w].
ProductParameterization可以构建一个Cartesian product of localparameterization.
ProductParameterization se3_param(new QuaternionParameterization(), new IdentityTransformation(3));
AutoDiffLocalParameterization
struct QuaternionPlus {
template<typename T>
bool operator() (const T* x, const T* delta, T* x_plus_delta) const {
const T squared_norm_delta = delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2];
T q_delta[4];
if (squared_norm_delta > 0.0) {
T norm_delta = sqrt(squared_norm_delta);
const T sin_delta_by_delta = sin(norm_delta) / norm_delta;
q_delta[0] = cos(norm_delta);
q_delta[1] = sin_delta_by_delta * delta[0];
q_delta[2] = sin_delta_by_delta * delta[1];
q_delta[3] = sin_delta_by_delta * delta[2];
} else {
q_delta[0] = T(1.0);
q_delta[1] = delta[0];
q_delta[2] = delta[1];
q_delta[3] = delta[2];
}
Quaternionproduct(q_delta, x, x_plus_delta);
return true;
}
};
Given this struct, the auto differentiated lcoal parameterization can now be constructed as
LocalParameterization* local_parameterization =
new AutoDiffLocalParameterization<QuaternionPlus, 4, 3>; // global size and local size
Problem
Use Problem::AddResidualBlock() and Problem::AddParameterBlock() methods.
Problem::AddResidualBlock()加入一个CostFunction,一个可选项的LossFunction,然后链接CostFunction和一系列的parameter block。
AddResidualBlock
ResidualBlockId Problem::AddResidualBlock(CostFunction*, LossFunction*, const vector<double*> parameter_blocks);
ResidualBlockId Problem::AddResidualBlock(CostFunction*, LossFunction*, double* x0, double* x1...);
CostFunction有parameter block的信息,这个函数会检查这些信息是否匹配。
LossFunction可以是NULL。
用户可以选择explicitly加入parameter block用``AddParameterBlock``,这会加入一些额外的检查。但是``AddResidualBlock``会implicitly加入不存在的parameter block。
Problem对象会默认拥有cost_function和loss_function的指针,他们会在problem对象存在的受活着。如果用户想自己销毁的话,可以在option里面设置。
尽管problem拥有cost_function和loss_function,它不会妨碍用户在其他residual block中重复使用。销毁器只会销毁cost_function和loss_function一次,不管多少residual block引用了他们。
???如果两个problem用了同一个parameter block,会有double free的问题么?
### AddParameterBlock
```cpp
void Problem::AddParameterBlock(double8 values, int size, LocalParameterization *);
加入合适的size的parameter block给problem。
重复的参数被加入会被ignore。
重复加入一个参数块但是定义不一样的size的结果是undefined。
Problem::RemoveResidualBlock
void Problem::RemoveResidualBlock(ResidualBlockId);
移除一个residual block,但是任何依赖的parameter不会被移除。
对应的cost function和loss function不会被立马删除,会在problem被销毁后。
如果Problem::Options::enable_fast_removal为真,会移除会快(constant time),不然会扫描整个problem来看是否是valid residual。
WARNING: 会改变内部的顺序,导致雅克比和参差没法解析,如果是用evaluated jacobian的话,最好别这么做。
Problem::RemoveParameterBlock
void Problem::RemoveParameterBlock(double *values)
以来这个parameter block的residual block也会被移除。
WARNING和上述一样。
Others
void Problem::SetParameterBlockConstant(double* values);
void Problem::SetParameterBlockVaribale(double* values);
void Problem::SetParameterization(double* values, LocalParameterization*);
LocalParameterization* Problem::GetParameterization(double* values);
void Problem::SetParameterLowerBound(double* value, int index, double lower_bound);
void Problem::SetParameterUpperBound(double* value, int index, double upper_bound);
rotation.h
template <typename T>
void AngleAxisToQuaternion(T const *angle_axis, T* quaternion);
template <typename T>
void QuaternionToAngleAxis(T const *quaternion, T* angle_axis);
template <typename T, int row_stride, int col_stride>
void RotationMatrixToAngleAxis(const MatrixAdapter<const T, row_stride, col_stride>&R, T* angle_axis);
template <typename T, int row_stride, int col_stride>
void AngleAxisToRotationMatrix(T const* angle_axis, const MatrixAdapter<T, row_stride, col_stride> &R)
template <typename T>
void RotationMatrixToAngleAxis(T const* R, T* angle_axis);
tempalte <typename T>
void AngleAxisToRotationMatrix(T const* angle_axis, T* R);
Ceres Solver 入门稍微多一点的更多相关文章
- Ceres Solver: 高效的非线性优化库(二)实战篇
Ceres Solver: 高效的非线性优化库(二)实战篇 接上篇: Ceres Solver: 高效的非线性优化库(一) 如何求导 Ceres Solver提供了一种自动求导的方案,上一篇我们已经看 ...
- Ceres Solver for android
最近开发中,需要对图片做一些处理与线性技术,这时就用到了Ceres Solver.如何把Ceres Solver集成到Android里呢? 官网给了一个解决方案,简洁明了: Downloa ...
- VINS(九)Ceres Solver优化(未完待续)
使用Ceres Solver库处理后端优化问题,首先系统的优化函数为
- Ceres Solver: 高效的非线性优化库(一)
Ceres Solver: 高效的非线性优化库(一) 注:本文基于Ceres官方文档,大部分由英文翻译而来.可作为非官方参考文档. 简介 Ceres,原意是谷神星,是发现不久的一颗轨道在木星和火星之间 ...
- [HeadFist-HTMLCSS学习笔记][第七章CSS入门:加一点样式]
CSS入门 style元素设置CSS 基本格式 <style type="text/css"> body { background-color: #eaf3da; } ...
- LeetCode 笔记系列15 Set Matrix Zeroes [稍微有一点hack]
题目:Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place. Fol ...
- Android平台使用Ceres Solver
在Android平台上使用Ceres求解器,官方教程不明确,且编译过程遇到了很多问题. 环境 Ubuntu 18.04 源代码 https://github.com/Great-Keith/ceres ...
- 入门 uCOS 操作系统的一点建议
原创: 鱼鹰Osprey 鱼鹰谈单片机 3月2日 预计阅读时间: 4 分钟 对于想入门操作系统的读者,我的建议是先学 uCOS II.原因有以下几点: 1.最为重要的原因是网上相关资源非常丰富,这对 ...
- Ceres Solver 在win8+vs2013环境下的安装
参考博文:https://blog.csdn.net/wzheng92/article/details/79504709
随机推荐
- iOS项目之iPhoneX遇到的坑
问题一: 今天升级到Xcode 9.0,里面多了iPhone 8,iPhone 8P,iPhone X三款手机模拟器,而且发现最多可以同时运行五个模拟器.但随之而来的问题也出现了,就是 iPhone ...
- vuex store刷新存储状态
app.vue 平时不想把信息存到session里,只有无可奈何的时候才准备村 <script> export default { name: 'App', created() { //刷 ...
- Kafka启动报错 : ERROR Processor got uncaught exception
参照我之前的一篇博文Kafka学习之(二)Centos下安装Kafka安装了kafka并启动,状况并不像我之前最初的预期,报错了,并且我在当前Linux环境下安装的Java版本.Kafka版本都是和之 ...
- ASP.NET Core开发总结
1.关于浏览器缓存,修改CSS文件和Javascript文件后调试,浏览器不更新问题,解决办法是在link标签和script标签引用的文件名后面添加版本信息如下: <link rel=" ...
- FL Studio里的常规设置介绍
上期我们介绍了FL Studio中的项目设置,今天我们来介绍FL Studio中的常规设置.要打开常规设置,我们需要在主菜单中选择选项>常规选项,当然也可以直接按快捷键F10. “常规设置”页面 ...
- Java基础学习-Eclipse综述和运算符的使用
1.Eclipse的概述(磨刀不误砍柴工) -Eclipse是一个IDE(集成开发环境) -IDE(Intergrated Development Environment) ...
- 【做题】CSA72G - MST and Rectangles——Borůvka&线段树
原文链接 https://www.cnblogs.com/cly-none/p/CSA72G.html 题意:有一个\(n \times n\)的矩阵\(A\),\(m\)次操作,每次在\(A\)上三 ...
- jenkins 配置
配置: echo " aliyun.oss.access.key=LTAIz4Koeff8sCr8 " > ./src/main/resources/oss.dev.prop ...
- centOS 及 ubuntu 下载地址记录
CentOS下载地址: http://isoredirect.centos.org/centos/7/isos/x86_64/CentOS-7-x86_64-DVD-1611.iso : ubu ...
- SAP 成套销售&按项目销售
http://blog.sina.com.cn/s/blog_95ac31e30102x5we.html 分类: SAP_SD SAP 成套销售&按项目销售 一.业务简介 成套销售(KIT ...