Java数据结构和算法 - TreeMap源码理解红黑树
前言
本篇将结合JDK1.6的TreeMap源码,来一起探索红-黑树的奥秘。红黑树是解决二叉搜索树的非平衡问题。
当插入(或者删除)一个新节点时,为了使树保持平衡,必须遵循一定的规则,这个规则就是红-黑规则:
1) 每个节点不是红色的就是黑色的
2) 根总是黑色的
3) 如果节点是红色的,则它的子节点必须是黑色的(反之倒不一定必须为真)
4) 从跟到叶节点或者空子节点的每条路径,必须包含相同数目的黑色节点
插入一个新节点
红-黑树的插入过程和普通的二叉搜索树基本一致:从跟朝插入点位置走,在每个节点处通过比较节点的关键字相对大小来决定向左走还是向右走。
public V put(K key, V value) {
Entry<K,V> t = root;
int cmp;
Entry<K,V> parent;
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0) {
t = t.left;
} else if (cmp > 0) {
t = t.right;
} else {
// 注意,return退出方法
return t.setValue(value);
}
} while (t != null);
Entry<K,V> e = new Entry<K,V>(key, value, parent);
if (cmp < 0) {
parent.left = e;
} else {
parent.right = e;
}
fixAfterInsertion(e);
size++;
modCount++;
return null;
}
但是,在红-黑树种,找到插入点更复杂,因为有颜色变换和旋转。fixAfterInsertion()方法就是处理颜色变换和旋转,需重点掌握它是如何保持树的平衡(use rotations and the color rules to maintain the tree’s balance)。
下面的讨论中,使用X、P、G表示关联的节点。X表示一个特殊的节点, P是X的父,G是P的父。
X is a node that has caused a rule violation. (Sometimes X refers to a newly inserted node, and sometimes to the child node when a parent and child have a redred conflict.)
On the way down the tree to find the insertion point, you perform a color flip whenever you find a black node with two red children (a violation of Rule 2). Sometimes the flip causes a red-red conflict (a violation of Rule 3). Call the red child X and the red parent P. The conflict can be fixed with a single rotation or a double rotation, depending on whether X is an outside or inside grandchild of G. Following color flips and rotations, you continue down to the insertion point and insert the new node.
After you’ve inserted the new node X, if P is black, you simply attach the new red node. If P is red, there are two possibilities: X can be an outside or inside grandchild of G. If X is an outside grandchild, you perform one rotation, and if it’s an inside grandchild, you perform two. This restores the tree to a balanced state.
按照上面的解释,讨论可分为3个部分,按复杂程度排列,分别是:
1) 在下行路途中的颜色变换(Color flips on the way down)
2) 插入节点之后的旋转(Rotations after the node is inserted)
3) 在向下路途上的旋转(Rotations on the way down)
在下行路途中的颜色变换(Color flips on the way down)
Here’s the rule: Every time the insertion routine encounters a black node that has two red children, it must change the children to black and the parent to red (unless the parent is the root, which always remains black)
The flip leaves unchanged the number of black nodes on the path from the root on down through P to the leaf or null nodes.
尽管颜色变换不会违背规则4,但是可能会违背规则3。如果P的父是黑色的,则P由黑色变成红色时不会有任何问题,但是,如果P的父是红色的,那么在P的颜色变化之后,就有两个红色节点相连接了。这个问题需要在继续向下沿着路径插入新节点之前解决,可以通过旋转修正这个问题,下文将会看到。
插入节点之后的旋转(Rotations after the node is inserted)
新节点在插入之前,树是符合红-黑规则,在插入新节点之后,树就不平衡了,此时需要通过旋转来调整树的平衡,使之重新符合红-黑规则。
可能性1:P是黑色的,就什么事情也不用做。插入即可。
可能性2:P是红色,X是G的一个外侧子孙节点,则需要一次旋转和一些颜色的变化。
以插入50,25,75,12,6为例,注意节点6是一个外侧子孙节点,它和它的父节点都是红色。

在这个例子中,X是一个外侧子孙节点而且是左子节点,X是外侧子孙节点且为右子节点,是一种与此对称的情况。通过用50,25,75,87,93创建树,同理再画一画图,这里就省略了。
可能性3:P是红色,X是G的一个内侧子孙节点,则需要两次旋转和一些颜色的改变。
以插入50,25,75,12,18为例,注意节点18是一个内侧子孙节点,它和它的父节点都是红色。

在向下路途上的旋转(Rotations on the way down)
在插入新节点之前,实际上树已经违背了红-黑规则,所以需要插入新节点之前做调整。所以我们本次讨论的主题是“在向下路途准备插入新节点时,上面先进行调整,使上面成为标准的红黑树后,再进行新节点插入”。
外侧子孙节点
以插入50,25,75,12,37,6,18,3为例,例子中违背规则的节点是一个外侧子孙节点。

内侧子孙节点
以插入50,25,75,12,37,31,43为例,例子中违背规则的节点是一个内侧子孙节点。
红-黑树的效率
和一般的二叉搜索树类似,红-黑树的查找、插入和删除的时间复杂度为O(log2N)。
红-黑树的查找时间和普通的二叉搜索树的查找时间应该几乎完全一样。因为在查找过程中并没用到红-黑特征。额外的开销只是每个节点的存储空间都稍微增加了一点,来存储红黑颜色(一个boolean变量)。
final Entry<K, V> getEntry(Object key) {
Comparable <? super K > k = (Comparable <? super K > ) key;
Entry<K, V> p = root;
while (p != null) {
int cmp = k.compareTo(p.key);
if (cmp < 0) {
p = p.left;
} else if (cmp > 0) {
p = p.right;
} else {
return p;
}
}
return null;
}
插入和删除的时间要增加一个常数因子,因为不得不在下行的路径上和插入点执行颜色变换和旋转。平均起来一次插入大约需要一次旋转。
因为在大多数应用中,查找的次数比插入和删除的次数多,所以应用红-黑树取代普通的二叉搜索树总体上不会增加太多的时间开销。
参考资料
Java数据结构和算法 - TreeMap源码理解红黑树的更多相关文章
- 结合java.util.TreeMap源码理解红黑树
前言 本篇将结合JDK1.6的TreeMap源码,来一起探索红-黑树的奥秘.红黑树是解决二叉搜索树的非平衡问题. 当插入(或者删除)一个新节点时,为了使树保持平衡,必须遵循一定的规则,这个规则就是红- ...
- Java - TreeMap源码解析 + 红黑树
Java提高篇(二七)-----TreeMap TreeMap的实现是红黑树算法的实现,所以要了解TreeMap就必须对红黑树有一定的了解,其实这篇博文的名字叫做:根据红黑树的算法来分析TreeMap ...
- 数据结构与算法--从平衡二叉树(AVL)到红黑树
数据结构与算法--从平衡二叉树(AVL)到红黑树 上节学习了二叉查找树.算法的性能取决于树的形状,而树的形状取决于插入键的顺序.在最好的情况下,n个结点的树是完全平衡的,如下图"最好情况&q ...
- jdk源码分析红黑树——插入篇
红黑树是自平衡的排序树,自平衡的优点是减少遍历的节点,所以效率会高.如果是非平衡的二叉树,当顺序或逆序插入的时候,查找动作很可能会遍历n个节点 红黑树的规则很容易理解,但是维护这个规则难. 一.规则 ...
- HashMap1.8源码分析(红黑树)
转载:https://segmentfault.com/a/1190000012926722?utm_source=tag-newest https://blog.csdn.net/weixin_40 ...
- JAVA中的数据结构 - 真正的去理解红黑树
一, 红黑树所处数据结构的位置: 在JDK源码中, 有treeMap和JDK8的HashMap都用到了红黑树去存储 红黑树可以看成B树的一种: 从二叉树看,红黑树是一颗相对平衡的二叉树 二叉树--&g ...
- TreeMap源码剖析
原文 http://blog.csdn.net/chdjj/article/details/38782221 主题 源码分析红黑树 注:以下源码基于jdk1.7.0_11 之前介绍了一系列Map集合 ...
- 数据结构与算法系列2 线性表 使用java实现动态数组+ArrayList源码详解
数据结构与算法系列2 线性表 使用java实现动态数组+ArrayList源码详解 对数组有不了解的可以先看看我的另一篇文章,那篇文章对数组有很多详细的解析,而本篇文章则着重讲动态数组,另一篇文章链接 ...
- 转:【Java集合源码剖析】TreeMap源码剖析
前言 本文不打算延续前几篇的风格(对所有的源码加入注释),因为要理解透TreeMap的所有源码,对博主来说,确实需要耗费大量的时间和经历,目前看来不大可能有这么多时间的投入,故这里意在通过于阅读源码对 ...
随机推荐
- 合并多个对象并且去重的2种写法(es6)
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- ansible字符串的处理
ansible中字符串的处理 from_json json_query join select selectattr map list trim 列表和字典的处理 combine
- 2018年多校第三场第一题 A. Ascending Rating hdu6319
比赛地址:http://acm.hdu.edu.cn/contests/contest_show.php?cid=804 题目编号:第一题 A. Ascending Rating hdu6319 题 ...
- 《团队作业第三、第四周》五小福团队作业--Scrum 冲刺阶段--Day7
<团队作业第三.第四周>五小福团队作业--Scrum 冲刺阶段--Day7 一.项目燃尽图 二.项目进展 [20172301郭恺第七天的进展] 第七天完成的任务: 代码整合,界面调整为相对 ...
- 【spring】-- jsr303参数校验器
一.为什么要进行参数校验? 当我们在服务端控制器接受前台数据时,肯定首先要对数据进行参数验证,判断参数是否为空?是否为电话号码?是否为邮箱格式?等等. 这里有个问题要注意: 前端代码一般上会对这些数据 ...
- 支付宝红包口令自动复制到剪贴板脚本js,安卓,IOS通用版
有客户找到涛舅舅,要求开发一个可以自动支付宝红包口令的js脚本,经过大量探索和优化,目前此脚本功能已经测试成功! 预期效果: 只要来访用户在当前网页的任意位置点击一下,支付宝红包口令即可复制到用户手机 ...
- 自己制作一个USB自动挖矿器
先讲下设备效果: 对面坐着一位同事中午去吃饭没锁屏幕,这时候你想用他的电脑去挖矿, 挖矿,当然不可能跑到他的座位上,关掉360然后下载个挖矿软件什么的.... 这时候你只需要花十块钱制作如下设备,然后 ...
- Ubuntu全盘备份与恢复,亲自总结,实测可靠
https://blog.csdn.net/sinat_27554409/article/details/78227496 Ubuntu全盘备份与恢复,亲自总结,实测可靠 初学者在使用Ubuntu这类 ...
- Javascript 获取文档元素
一.getElementById() 参数:id 属性,必须唯一. 返回:元素本身.若 id 不唯一,则返回第一个匹配的元素. 定义的位置:仅 document(即:除 document 之外的元素调 ...
- 虚拟环境更新HA
停止HA服务 sudo systemctl stop homeassistant@homeassistant 开始更新HA sudo -u homeassistant -H -s cd /srv/ho ...