3439: Kpm的MC密码

Description

背景

想Kpm当年为了防止别人随便进入他的MC,给他的PC设了各种奇怪的密码和验证问题(不要问我他是怎么设的。。。),于是乎,他现在理所当然地忘记了密码,只能来解答那些神奇的身份验证问题了。。。

描述

Kpm当年设下的问题是这样的:

现在定义这么一个概念,如果字符串s是字符串c的一个后缀,那么我们称c是s的一个kpm串。

系统将随机生成n个由a…z组成的字符串,由1…n编号(s1,s2…,sn),然后将它们按序告诉你,接下来会给你n个数字,分别为k1…kn,对于每一个ki,要求你求出列出的n个字符串中所有是si的kpm串的字符串的编号中第ki小的数,如果不存在第ki小的数,则用-1代替。(比如说给出的字符串是cd,abcd,bcd,此时k1=2,那么”cd”的kpm串有”cd”,”abcd”,”bcd”,编号分别为1,2,3其中第2小的编号就是2)(PS:如果你能在相当快的时间里回答完所有n个ki的查询,那么你就可以成功帮kpm进入MC啦~~)

Input

第一行一个整数 n 表示字符串的数目

接下来第二行到n+1行总共n行,每行包括一个字符串,第i+1行的字符串表示编号为i的字符串

接下来包括n行,每行包括一个整数ki,意义如上题所示

Output

包括n行,第i行包括一个整数,表示所有是si的kpm串的字符串的编号中第ki小的数

Sample Input

3
cd
abcd
bcd
2
3
1

Sample Output

2
-1
2

样例解释

“cd”的kpm 串有”cd”,”abcd”,”bcd”,编号为1,2,3,第2小的编号是

2,”abcd”的kpm串只有一个,所以第3小的编号不存在,”bcd”的kpm

串有”abcd”,”bcd”,第1小的编号就是2。

数据范围与约定

设所有字符串的总长度为len

对于100%的数据,1<=n<=100000,0

 
 
【题意】
  

  给n(10^5)个字符串,总长(10^5),每个字符串给出ki。对于每个字符串si,把每个存在后缀为si的字符串拿出来,其中编号第ki小的就是si的答案。将每个字符串的答案输出。

【分析】

  把字符串反过来建一颗字典树,那么它子树上的就都和和他同后缀。求出dfs序,问题就转化成区间第k小的数,用主席树解决。

代码如下:

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 100010
#define Maxd 20 struct node
{
int x,f,p,dfn,rh;
int son[];
}t[Maxn]; void upd(int x)
{
t[x].p=;
memset(t[x].son,,sizeof(t[x].son));
} char s[Maxn];
int n,nt[Maxn],tot;
int wh[Maxn],k[Maxn]; int mymax(int x,int y) {return x>y?x:y;} void init()
{
scanf("%d",&n);
upd();tot=;
for(int i=;i<=n;i++)
{
scanf("%s",s);
int l=strlen(s);
int now=;
for(int j=l-;j>=;j--)
{
int ind=s[j]-'a'+;
if(!t[now].son[ind])
{
t[now].son[ind]=++tot;
upd(tot);t[tot].f=now;
}
now=t[now].son[ind];
if(j==)
{
nt[i]=t[now].p;
t[now].p=i;
wh[i]=now;
}
}
}
for(int i=;i<=n;i++) scanf("%d",&k[i]);
} int cnt,df[Maxn];
void dfs(int x)
{
t[x].dfn=t[x].rh=++cnt;df[cnt]=x;
for(int i=;i<=;i++) if(t[x].son[i])
{
dfs(t[x].son[i]);
t[x].rh=t[t[x].son[i]].rh;
}
} int rt[Maxn],sum;
struct hp
{
int son[],cnt;
}a[Maxn*Maxd]; void dfs2(int l,int x,int dep)
{
if(dep==) return;
if(a[x].son[]) dfs2(a[l].son[],a[x].son[],dep-);
else a[x].son[]=a[l].son[];
if(a[x].son[]) dfs2(a[l].son[],a[x].son[],dep-);
else a[x].son[]=a[l].son[];
} void build()
{
sum=;
a[].son[]=a[].son[]=a[].cnt=;
rt[]=;
for(int i=;i<=tot;i++)
{
rt[i]=++sum;
int l,r;
l=rt[i-],r=sum;
a[rt[i]].cnt=a[rt[i-]].cnt;
for(int j=t[df[i]].p;j;j=nt[j])
{
int x=j;
a[rt[i]].cnt++;
l=rt[i-];r=rt[i];
for(int kk=;kk>=;kk--)
{
int ind=x/(<<kk-);
x%=(<<kk-);
l=a[l].son[ind];
if(!a[r].son[ind])
{
a[r].son[ind]=++sum;
a[sum].cnt=a[l].cnt;
a[sum].son[]=a[sum].son[]=;
}
r=a[r].son[ind];
a[r].cnt++;
}
}
dfs2(rt[i-],rt[i],);
}
} int ffind(int l,int r,int kk)
{
l--;
l=rt[l];r=rt[r];
int ans=;
if(a[r].cnt-a[l].cnt<kk) return -;
for(int i=;i>=;i--)
{
if(a[a[r].son[]].cnt-a[a[l].son[]].cnt>=kk)
{
l=a[l].son[];
r=a[r].son[];
}
else
{
kk-=a[a[r].son[]].cnt-a[a[l].son[]].cnt;
l=a[l].son[];
r=a[r].son[];
ans+=(<<i-);
}
}
return ans;
} int main()
{
init();
cnt=-;
dfs();
build();
for(int i=;i<=n;i++)
{
printf("%d\n",ffind(t[wh[i]].dfn,t[wh[i]].rh,k[i]));
}
return ;
}

[BZOJ3439]

2016-08-24 11:03:11

【BZOJ3439】 Kpm的MC密码 (TRIE+主席树)的更多相关文章

  1. 【BZOJ3439】Kpm的MC密码 Trie树+可持久化线段树

    [BZOJ3439]Kpm的MC密码 Description 背景 想Kpm当年为了防止别人随便进入他的MC,给他的PC设了各种奇怪的密码和验证问题(不要问我他是怎么设的...),于是乎,他现在理所当 ...

  2. BZOJ 3439: Kpm的MC密码( trie + DFS序 + 主席树 )

    把串倒过来插进trie上, 那么一个串的kpm串就是在以这个串最后一个为根的子树, 子树k大值的经典问题用dfs序+可持久化线段树就可以O(NlogN)解决 --------------------- ...

  3. BZOJ3439: Kpm的MC密码

    3439: Kpm的MC密码 Time Limit: 15 Sec  Memory Limit: 256 MBSubmit: 166  Solved: 79[Submit][Status] Descr ...

  4. 【BZOJ3439】Kpm的MC密码 trie树+主席树

    Description 背景 想Kpm当年为了防止别人随便进入他的MC,给他的PC设了各种奇怪的密码和验证问题(不要问我他是怎么设的...),于是乎,他现在理所当然地忘记了密码,只能来解答那些神奇的身 ...

  5. BZOJ 3439: Kpm的MC密码 (trie+dfs序主席树)

    题意 略 分析 把串倒过来插进trietrietrie上, 那么一个串的kpmkpmkpm串就是这个串在trietrietrie上对应的结点的子树下面的所有字符串. 那么像 BZOJ 3551/354 ...

  6. BZOJ3439 Kpm的MC密码(可持久化trie)

    将串反过来就变成查询前缀了.考虑建一棵可持久化trie,查询时二分答案,均摊一下复杂度即为O(mlogn). #include<iostream> #include<cstdio&g ...

  7. BZOJ 3439 Kpm的MC密码 (Trie树+线段树合并)

    题面 先把每个串反着插进$Trie$树 每个节点的子树内,可能有一些节点是某些字符串的开头 每个节点挂一棵权值线段树,记录这些节点对应的原来字符串的编号 查询的时候在线段树上二分即可 为了节省空间,使 ...

  8. bzoj 3439: Kpm的MC密码 Trie+动态开点线段树

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3439 题解: 首先我们发现这道题要查的是后缀不是前缀. 如果查前缀就可以迅速查找到字符串 ...

  9. 【BZOJ】【3439】Kpm的MC密码

    Trie树/可持久化线段树 神题啊……搞了我一下午= =(其实第233个提交也是我的) 我一开始的思路:这个找kpm串的过程,其实就跟在AC自动机上沿fail倒着往下走是差不多的(看当前是哪些点的后缀 ...

随机推荐

  1. C++学习(二)

    九.3.内联1)编译器用函数的二进制代码替换函数调用语句,减少函数调用的时间开销.这种优化策略成为内联.2)频繁调用的简单函数适合内联,而稀少调用的复杂函数不适合内联.3)递归函数无法内联.4)通过i ...

  2. c语言学习之基础知识点介绍(十二):结构体的介绍

    一.结构体的介绍 /* 语法: struct 结构体名{ 成员列表; }; 切记切记有分号! 说明:成员列表就是指你要保存哪些类型的数据. 注意:上面的语法只是定义一个新的类型,而这个类型叫做结构体类 ...

  3. 主机访问 虚拟机web注意事项

    在这里, 我通过NAT的方式, 通过主机访问虚拟机. 需要做的是, 将主机中访问的端口, 映射为虚拟机的'编辑->虚拟网络编辑器->vmnet8', 如下图 在弹出的'映射传入端口'界面中 ...

  4. 1066. Root of AVL Tree

    An AVL tree is a self-balancing binary search tree.  In an AVL tree, the heights of the two child su ...

  5. Power Map 更新日志

    2015-05-18,五月更新 Custom Regions feature,允许用户自定义区域要素,支持kml和shape格式 New customization features,包括图例/文本框 ...

  6. javascript Window对象 第16节

    <html> <head> <title>浏览器对象</title> <script type="text/javascript&quo ...

  7. C#获取时间戳的问题

    最近在做一个接口,需要用到时间戳,在请求接口时,返回超时,接口方的技术称是时间戳的不对(超出一定范围[比如1分钟]就返回超时)导致的. 首先,看代码: public static double Get ...

  8. Google Test Frame 简单使用例子

    1 序言——为什么折腾Google Test 被逼无奈的. 最近研究google开源的基于列存储的数据库查询引擎supersonic源码.初略的浏览了一遍代码,竟然没有main函数,顿时惊讶的目瞪口呆 ...

  9. variable-precision SWAR算法:计算Hamming Weight

    variable-precision SWAR算法:计算Hamming Weight 转自我的Github 最近看书看到了一个计算Hamming Weight的算法,觉得挺巧妙的,纪录一下. Hamm ...

  10. jquery ajax post, get, javascript ajax post, get 处理

    ajax 创建 XMLHttp 对象IE7 以上的版本都支持 XMLHttpRequestIE7 以下的用 ActiveXObject async:true,  // 当false 时,当执行完这个才 ...