1233: [Usaco2009Open]干草堆tower

Description

奶牛们讨厌黑暗。 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 。一共有N大包的干草(1<=N<=100000)(从1到N编号)依靠传送带连续的传输进牛棚来。第i包干草有一个 宽度W_i(1<=w_i<=10000)。所有的干草包的厚度和高度都为1. Bessie必须利用所有N包干草来建立起干草堆,并且按照他们进牛棚的顺序摆放。她可以相放多少包就放 多少包来建立起tower的地基(当然是紧紧的放在一行中)。接下来他可以放置下一个草包放在之前一级 的上方来建立新的一级。注意:每一级不能比下面的一级宽。她持续的这么放置,直到所有的草包都被安 置完成。她必须按顺序堆放,按照草包进入牛棚的顺序。说得更清楚一些:一旦她将一个草包放在第二级 ,她不能将接下来的草包放在地基上。 Bessie的目标是建立起最高的草包堆。

Input

第1行:一个单一的整数N。 第2~N+1行:一个单一的整数:W_i。

Output

第一行:一个单一的整数,表示Bessie可以建立的草包堆的最高高度。

Sample Input

3
1
2
3

Sample Output

2
输出说明:
前两个(宽度为1和2的)放在底层,总宽度为3,在第二层放置宽度为3的。
+----------+
| 3 |
+---+------+
| 1 | 2 |
+---+------+
 
 
【分析】
  其实我真的没有对单调的东西很有感觉,一开始就没想证单调。。。
  嗯,很自然想要把草堆倒过来做,先堆小的。
  首先,要想出一维的DP,这个就很不容易,你要证明:至少有一种能使层数最高的方案同时使得底边最短。
  好了我不会证,直接copy大神的证明了:
  任意取出一个能使层数最高的方案,设有CA层,把其中从下往上每一层最大的块编号记为Ai;任取一个能使底边最短的方案,设有CB层,把其中从下往上每一层最大的块编号记为Bi。显然A1>=B1,ACB<=BCB,这说明至少存在一个k属于(1,CB),满足Ak-1>=Bk-1且Ak<=Bk。也就是说,方案 A 第K 层完全被方案 B 第K 层包含。构造一个新方案,第K 层往上按方案 A,往下按方案 B,两边都不要的块放中间当第K 层。新方案的层数与 A 相同,而底边长度与 B 相同。证毕。
by zkw?
  
  然后列出方程  f[i]=f[j]+1 (sum[i]-sum[j]>g[j]) [f[j]表示做完前j个的最高高度,g[j]表示得到f[j]时最后一层的宽度]
  这个方程很有特点,主要就是限制,方程十分简单,而且很明显是单调不减的。
  答案是单调不减,却有一定的限制,这个我还很少见呢。
  换一下想法就好了啊,让f做x轴,g[j]+sum[j]做y轴,f不减时g[j]+sum[j]递增,形成了一个单调队列。
  队头删,队尾删、插smg的,懂的啦。。
 
代码如下:
 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 100010 int w[Maxn];
int q[Maxn],st[Maxn],ql,qr;
int sum[Maxn],f[Maxn],g[Maxn]; int mymax(int x,int y) {return x>y?x:y;} int main()
{
int n;
scanf("%d",&n);
sum[]=;
for(int i=;i<=n;i++)
{
scanf("%d",&w[i]);
// sum[i]=sum[i-1]+w[i];
}
sum[n+]=;
for(int i=n;i>=;i--) sum[i]=sum[i+]+w[i];
qr=;
q[++qr]=;st[qr]=n+;g[qr]=;ql=; int ans=;
for(int i=n;i>=;i--)
{
while(ql<qr&&sum[i]>=g[ql+]) ql++;
f[i]=q[ql]+;int now=sum[st[ql]];
while(*sum[i]-now<=g[qr]&&ql<=qr) qr--;
q[++qr]=f[i];st[qr]=i;g[qr]=*sum[i]-now;
ans=mymax(ans,f[i]);
}
printf("%d\n",ans);
return ;
}

[BZOJ 1233]

话说,真真是一道难想的题。

2016-10-19 20:45:20

【BZOJ 1233】 [Usaco2009Open]干草堆tower (单调队列优化DP)的更多相关文章

  1. bzoj1233[Usaco2009Open]干草堆tower 单调队列优化dp

    1233: [Usaco2009Open]干草堆tower Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 983  Solved: 464[Submi ...

  2. bzoj 1233: [Usaco2009Open]干草堆tower

    1233: [Usaco2009Open]干草堆tower Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的 ...

  3. bzoj 1233: [Usaco2009Open]干草堆tower 【想法题】

    首先这题的$n^3$的DP是比较好想的 $f[i][j]$表示用前$i$包干草 且最顶层为第$j+1$包到第$i$包 所能达到的最大高度 然而数据范围还是太大了 因此我们需要去想一想有没有什么单调性 ...

  4. bzoj 1233: [Usaco2009Open]干草堆tower【dp+单调栈】

    参考:https://www.cnblogs.com/N-C-Derek/archive/2012/07/11/usaco_09_open_tower.html 虽然长得很像斜率优化,但是应该不算-- ...

  5. ●BZOJ 1233 [Usaco2009Open] 干草堆 tower

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1233 留坑.以后再来看看. (绝望,无奈,丧心...) (这个题的证明真的很诡异啊,看得我稀 ...

  6. BZOJ 2806 [Ctsc2012]Cheat ——后缀自动机 单调队列优化DP

    先建出广义后缀自动机. 然后跑出文章中每一个位置的最大匹配距离. 然后定义$f[i]$表示匹配到以$i$结尾的串时,最长的匹配距离. 显然可以二分$L$的取值. 然后容易得到$DP$方程 $f[i]= ...

  7. 1233: [Usaco2009Open]干草堆tower

    传送门 感觉正着做不太好搞,考虑倒过来搞 容易想到贪心,每一层都贪心地选最小的宽度,然后发现 $WA$ 了... 因为一开始多选一点有时可以让下一层宽度更小 然后有一个神奇的结论,最高的方案一定有一种 ...

  8. BZOJ 1010: [HNOI2008]玩具装箱toy | 单调队列优化DP

    原题: http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题解: #include<cstdio> #include<algo ...

  9. 【BZOJ 1233】 干草堆

    [题目链接] 点击打开链接 [算法] 这题有一个性质 : 位于顶层的干草堆可以满足宽度最小且高度最高 根据这个性质,用单调队列优化DP,即可 [代码] #include<bits/stdc++. ...

随机推荐

  1. linux中的openoffice服务终止运行

    现象: 最近的linux中的openoffice服务进程运行一段时间后会自动停止,刚开始还以为忘了启动执行自启动脚本导致的.在连续出现前述情况后,开始查找应用程序崩溃的原因,首先查看linux服务器的 ...

  2. 加快modelsim仿真速度的方法(原创)

    ①仿真精度越高,仿真效率月底. 仿真时采用`timescale 1ns/1ns比采用1ns/100ps的仿真效率高 simulation was two billion ns. ②clock gene ...

  3. Jquery获得控件值的方法

    一 Jquery获得服务器控件值的方法 由于ASP.NET网页运行后,服务器控件会随机生成客户端id,jquery获取时候不太好操作,google了下,总结有以下3种方法: 服务器控件代码:<a ...

  4. jqery筛选

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. readonly和const区别

    常量和只读变量的区别 const string name="Xuj"; readonly string name; 1.常量是不可改变的,只读变量只能在构造方法中才能改变其值. 2 ...

  6. eclipse和android studio导入工程的错误

    eclipse中导入工程,需要注意导入的工程是什么,android 工程和java工程是有区别的.如果导入错误了,调起来也比较麻烦.因为入口错了呀. 特别在android studio工程,从其它人的 ...

  7. SQL的update from 理解

    学习了sql的语句都有快3年,工作上使用都一年半的,最近突然想起update from语句,感觉好像很模糊,虽然语法上使用一直正确,一直都是这样使用,但是就好像不是很明白里面的深处意思. 今天特意测试 ...

  8. SDL实现按钮

    是的,按钮控件很常见,几乎在每一个Windows窗体内都能找到它的身影.SDL作为一套“一套开放源代码的跨平台多媒体开发库”,自然可以实现按钮.而按钮实现的重点,就是SDL的鼠标响应事件. SDL的鼠 ...

  9. 哥德巴赫猜想证明(C语言实现50以内的正偶数证明)

    <一>哥德巴赫猜想内容: 一个充分大的偶数(大于或等于6)可以分解为两个素数之和. <二>实现要点: 要点: 判断素数(质数):除了1和本身没有其他约数. 最小的质数:2 判断 ...

  10. bzoj3202:[Sdoi2013]项链

    思路:首先考虑如何求珠子个数,一个珠子由a,b,c三个数组成且属于区间[1,a],并满足gcd(a,b,c)=1.由于要求本质相同,对于a,b,c这样的一个无序的数列且满足gcd(a,b,c)=1,设 ...