1233: [Usaco2009Open]干草堆tower

Description

奶牛们讨厌黑暗。 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 。一共有N大包的干草(1<=N<=100000)(从1到N编号)依靠传送带连续的传输进牛棚来。第i包干草有一个 宽度W_i(1<=w_i<=10000)。所有的干草包的厚度和高度都为1. Bessie必须利用所有N包干草来建立起干草堆,并且按照他们进牛棚的顺序摆放。她可以相放多少包就放 多少包来建立起tower的地基(当然是紧紧的放在一行中)。接下来他可以放置下一个草包放在之前一级 的上方来建立新的一级。注意:每一级不能比下面的一级宽。她持续的这么放置,直到所有的草包都被安 置完成。她必须按顺序堆放,按照草包进入牛棚的顺序。说得更清楚一些:一旦她将一个草包放在第二级 ,她不能将接下来的草包放在地基上。 Bessie的目标是建立起最高的草包堆。

Input

第1行:一个单一的整数N。 第2~N+1行:一个单一的整数:W_i。

Output

第一行:一个单一的整数,表示Bessie可以建立的草包堆的最高高度。

Sample Input

3
1
2
3

Sample Output

2
输出说明:
前两个(宽度为1和2的)放在底层,总宽度为3,在第二层放置宽度为3的。
+----------+
| 3 |
+---+------+
| 1 | 2 |
+---+------+
 
 
【分析】
  其实我真的没有对单调的东西很有感觉,一开始就没想证单调。。。
  嗯,很自然想要把草堆倒过来做,先堆小的。
  首先,要想出一维的DP,这个就很不容易,你要证明:至少有一种能使层数最高的方案同时使得底边最短。
  好了我不会证,直接copy大神的证明了:
  任意取出一个能使层数最高的方案,设有CA层,把其中从下往上每一层最大的块编号记为Ai;任取一个能使底边最短的方案,设有CB层,把其中从下往上每一层最大的块编号记为Bi。显然A1>=B1,ACB<=BCB,这说明至少存在一个k属于(1,CB),满足Ak-1>=Bk-1且Ak<=Bk。也就是说,方案 A 第K 层完全被方案 B 第K 层包含。构造一个新方案,第K 层往上按方案 A,往下按方案 B,两边都不要的块放中间当第K 层。新方案的层数与 A 相同,而底边长度与 B 相同。证毕。
by zkw?
  
  然后列出方程  f[i]=f[j]+1 (sum[i]-sum[j]>g[j]) [f[j]表示做完前j个的最高高度,g[j]表示得到f[j]时最后一层的宽度]
  这个方程很有特点,主要就是限制,方程十分简单,而且很明显是单调不减的。
  答案是单调不减,却有一定的限制,这个我还很少见呢。
  换一下想法就好了啊,让f做x轴,g[j]+sum[j]做y轴,f不减时g[j]+sum[j]递增,形成了一个单调队列。
  队头删,队尾删、插smg的,懂的啦。。
 
代码如下:
 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 100010 int w[Maxn];
int q[Maxn],st[Maxn],ql,qr;
int sum[Maxn],f[Maxn],g[Maxn]; int mymax(int x,int y) {return x>y?x:y;} int main()
{
int n;
scanf("%d",&n);
sum[]=;
for(int i=;i<=n;i++)
{
scanf("%d",&w[i]);
// sum[i]=sum[i-1]+w[i];
}
sum[n+]=;
for(int i=n;i>=;i--) sum[i]=sum[i+]+w[i];
qr=;
q[++qr]=;st[qr]=n+;g[qr]=;ql=; int ans=;
for(int i=n;i>=;i--)
{
while(ql<qr&&sum[i]>=g[ql+]) ql++;
f[i]=q[ql]+;int now=sum[st[ql]];
while(*sum[i]-now<=g[qr]&&ql<=qr) qr--;
q[++qr]=f[i];st[qr]=i;g[qr]=*sum[i]-now;
ans=mymax(ans,f[i]);
}
printf("%d\n",ans);
return ;
}

[BZOJ 1233]

话说,真真是一道难想的题。

2016-10-19 20:45:20

【BZOJ 1233】 [Usaco2009Open]干草堆tower (单调队列优化DP)的更多相关文章

  1. bzoj1233[Usaco2009Open]干草堆tower 单调队列优化dp

    1233: [Usaco2009Open]干草堆tower Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 983  Solved: 464[Submi ...

  2. bzoj 1233: [Usaco2009Open]干草堆tower

    1233: [Usaco2009Open]干草堆tower Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的 ...

  3. bzoj 1233: [Usaco2009Open]干草堆tower 【想法题】

    首先这题的$n^3$的DP是比较好想的 $f[i][j]$表示用前$i$包干草 且最顶层为第$j+1$包到第$i$包 所能达到的最大高度 然而数据范围还是太大了 因此我们需要去想一想有没有什么单调性 ...

  4. bzoj 1233: [Usaco2009Open]干草堆tower【dp+单调栈】

    参考:https://www.cnblogs.com/N-C-Derek/archive/2012/07/11/usaco_09_open_tower.html 虽然长得很像斜率优化,但是应该不算-- ...

  5. ●BZOJ 1233 [Usaco2009Open] 干草堆 tower

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1233 留坑.以后再来看看. (绝望,无奈,丧心...) (这个题的证明真的很诡异啊,看得我稀 ...

  6. BZOJ 2806 [Ctsc2012]Cheat ——后缀自动机 单调队列优化DP

    先建出广义后缀自动机. 然后跑出文章中每一个位置的最大匹配距离. 然后定义$f[i]$表示匹配到以$i$结尾的串时,最长的匹配距离. 显然可以二分$L$的取值. 然后容易得到$DP$方程 $f[i]= ...

  7. 1233: [Usaco2009Open]干草堆tower

    传送门 感觉正着做不太好搞,考虑倒过来搞 容易想到贪心,每一层都贪心地选最小的宽度,然后发现 $WA$ 了... 因为一开始多选一点有时可以让下一层宽度更小 然后有一个神奇的结论,最高的方案一定有一种 ...

  8. BZOJ 1010: [HNOI2008]玩具装箱toy | 单调队列优化DP

    原题: http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题解: #include<cstdio> #include<algo ...

  9. 【BZOJ 1233】 干草堆

    [题目链接] 点击打开链接 [算法] 这题有一个性质 : 位于顶层的干草堆可以满足宽度最小且高度最高 根据这个性质,用单调队列优化DP,即可 [代码] #include<bits/stdc++. ...

随机推荐

  1. angular下H5上传图片(可多张上传)

    最近做的项目中用到了angular下上传图片功能,在做的过程中遇到了许多问题,最终都得以解决 angular上传时和普通上传时过程差不多,只不过是要不一些东西转化为angular的东西. 1.ng-f ...

  2. Javascript 迭代法实现数组多条件排序

    多条件排序可能有很多种思路,效率也各不相同,我的方法可能只适合自己用,毕竟目的是为了实现功能,所以采用了最笨的方法,不过效果还是很理想的,经过多次测试,6列1000行数据,平均排序时间大约是:28ms ...

  3. js自执行函数表达式

    // 下面2个括弧()都会立即执行 (function () { /* code */ } ()); // 推荐使用这个(function () { /* code */ })(); // 但是这个也 ...

  4. Invalid SOAP message or SOAP version mismatch

    在把过车数据上传到海康平台的时候返回: Invalid SOAP message or SOAP version mismatch 网上找了说是协议问题,但是不知道如何解决: 我用客户端是c#2.0; ...

  5. PAT_1016 部分A+B

    问题描述: 正整数A的“DA(为1位整数)部分”定义为由A中所有DA组成的新整数PA.例如:给定A = 3862767,DA = 6,则A的“6部分”PA是66,因为A中有2个6. 现给定A.DA.B ...

  6. Installshield: custom action return value

    参考:MSDN: Custom Action Return Values 参考:MSDN: Logging of Action Return Values

  7. 操作系统之进程篇(4)--经典进程间通信(IPC)问题

    1. 哲学家进餐问题: 问题描述: 五个哲学家在一个圆桌上进餐,每人的面前放了一盘意大利面,两个盘子之间有一个叉子,但是由于盘子里面的面条十分光滑,需要两个叉子才能进行就餐行为.餐桌的布局如下图所示: ...

  8. Page类成员

    1. Request,Response,Server属性:对contex.Request,context.Response,context.Server的简化调用2. AppRelativeVirtu ...

  9. DataTable操作(建表,建行,建列,添加数据)

    public DataTable GetNewTable() { DataTable dt2 = new DataTable("NewDataSet"); //创建一个新Table ...

  10. 2015-01-27-从实验出发理解buffer与cache区别-吴伟顺

        通过du(find) 与 cat 体现buffer与cache差异实验: 实验表明: 1 通常 buffer << cache 2 "文件系统"相关内容(ino ...