题意:给你正整数n和k,然后计算从i到n k%i的和;

思路;如果n小于1000000,直接暴力计算,然后大于1000000的情况,然后在讨论n和k的大小,根据k%i的情况,你会发现规律,是多个等差数列,然后你把这些等差数列加上就是答案。

 #include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std; ll n,k;
ll Getsum(ll n)
{
ll sum=;
for(ll i=; i<=n; i++)
{
sum+=k%i;
}
return sum;
} int main()
{
while(scanf("%lld%lld",&n,&k)!=EOF)
{
if(n<=)
{
printf("%lld\n",Getsum(n));
continue;
}
ll ans=;
ans+=max((ll),n-k)*k;
for(int i=; i<=; i++)
{
if(i>k) break;
ll x1=k/(i-)-k/i;
if(k/i>n)continue;
int s=k%(k/(i-)),e=k%(k/i+);
if(k/(i-)>n)
{ s=k%n;
x1=n-k/i;
}
ans+=(s+e)*x1/;
}
if(k>)
{
ll m=k/;
ans+=Getsum(m);
}
printf("%lld\n",ans);
}
return ;
}

LA 3521 Joseph's Problem的更多相关文章

  1. UVALive - 3521 Joseph's Problem (整除分块)

    给定$n,k$$(1\leqslant n,k\leqslant 10^9)$,计算$\sum\limits _{i=1}^nk\: mod\:i$ 通过观察易发现$k\%i=k-\left \lfl ...

  2. UVa 1363 (数论 数列求和) Joseph's Problem

    题意: 给出n, k,求 分析: 假设,则k mod (i+1) = k - (i+1)*p = k - i*p - p = k mod i - p 则对于某个区间,i∈[l, r],k/i的整数部分 ...

  3. UVA 1363 Joseph's Problem 找规律+推导 给定n,k;求k%[1,n]的和。

    /** 题目:Joseph's Problem 链接:https://vjudge.net/problem/UVA-1363 题意:给定n,k;求k%[1,n]的和. 思路: 没想出来,看了lrj的想 ...

  4. Joseph's Problem UVALive - 3521(等差数列的应用)

    题意:给定n, k,求出∑ni=1(k mod i) 思路:由于n和k都很大,直接暴力是行不通的,然后在纸上画了一些情况,就发现其实对于k/i相同的那些项是形成等差数列的,于是就可以把整个序列进行拆分 ...

  5. Problem J. Joseph’s Problem 约瑟夫问题--余数之和

    链接:https://vjudge.net/problem/UVA-1363 题意:给出n  k,当 i 属于 1~n 时 ,求解 n% i 的和 n 和 k 的范围都是 1 到 10^9; 商相同 ...

  6. HDU - 3521 An easy Problem(矩阵快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=3521 题意 对于矩阵A,求e^A的值. 分析 这个定眼一看好像很熟悉,就是泰勒展开,可惜自己的高数已经还给老师了 ...

  7. UVa 1363 - Joseph's Problem(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  8. UVA 1363 Joseph's Problem

    https://vjudge.net/problem/UVA-1363 n 题意:求 Σ  k%i i=1 除法分块 如果 k/i==k/(i+1)=p 那么 k%(i+1)=k-(i+1)*p= k ...

  9. UVA1363 - Joseph's Problem(数学,迷之优化)

    题意:给出n和k,1≤n,k≤1e9,计算 切入点是k/i 和 k/(i+1)差距不大.令pi = k/i, ri = k%i.如果pi+1 == pi,那么ri+1 == k - pi(i+1) = ...

随机推荐

  1. android 在布局中动态添加控件

    第一步 final LayoutInflater inflater = LayoutInflater.from(this); 第二步:获取需要被添加控件的布局 final LinearLayout l ...

  2. android 22 启动带2个action值的预定义acticity

    main.xml <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" andro ...

  3. Qt 学习之路 :菜单栏、工具栏和状态栏

    在之前的<添加动作>一文中,我们已经了解了,Qt 将用户与界面进行交互的元素抽象为一种“动作”,使用QAction类表示.QAction可以添加到菜单上.工具栏上.期间,我们还详细介绍了一 ...

  4. 支付宝手机网站支付流程(Node实现)

    前言 公司M站要接入支付宝,借机研究了一下支付宝的支付流程.毕竟,只有公司才能拿到支付接口权限. 主要参考文档: https://doc.open.alipay.com/doc2/detail?tre ...

  5. c++中返回对象与返回引用的区别

    这几天在做用C++做课程设计,对其返回对象的实现感到迷惑. 通过对汇编代码的分析,可以清楚的看到,直接返回引用和返回对象的区别到底是什么. 分析的程序如下 #include<cstdio> ...

  6. 9.30 noip模拟试题

    时限均为1s,内存 256MB 1.某种密码(password.*) 关于某种密码有如下描述:某种密码的原文A是由N个数字组成,而密文B是一个长度为N的01数串,原文和密文的关联在于一个钥匙码KEY. ...

  7. Android使用 selector 自定义控件背景 (以spinner 为例)

    1. 在drawable中设置背景spinner_style.xml 文件  如图: 2. 在 styles.xml 中添加该背景 3. 最后在 spinner 控件添加样式 4.参考 http:// ...

  8. 使用EasyUI设计.net项目的菜单数实例

    最近领导说我们之前的项目采用的菜单树模型过时了,现在采用EasyUI来设计了,于是学习了第三方资源库easyUI,发觉果然是好东西,这里给大家分享下. 首先到官网下载源文件,这个是开源的,都可以下再, ...

  9. Deep Learning 学习随记(五)Deep network 深度网络

    这一个多周忙别的事去了,忙完了,接着看讲义~ 这章讲的是深度网络(Deep Network).前面讲了自学习网络,通过稀疏自编码和一个logistic回归或者softmax回归连接,显然是3层的.而这 ...

  10. Java之webService知识

    Java之webService知识 1 webservice基础知识 1.1 webService请求的本质 一次webService本质请求,如下所示: 1.2 wsdl文档解析 wsdl文档元素结 ...