最小生成树计数 bzoj 1016
最小生成树计数
【问题描述】
现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了。
【输入格式】
第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,000。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。
【输出格式】
输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。
【样例输入】
4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1
【样例输出】
8
题解:
1.用克鲁斯卡尔求一遍最小生成树,统计出某一权值在最小生成树中的个数(即所有权值相同的边的个数)
2.考虑对于每一种权值的方案(Dfs)
要求:
(1)选出的边数等于最小生成树中该权值拥有的边数
原理:最小生成树中每种权值的边数不变
(2)不含环,判断是否有环可以用不压缩路径的并查集处理
原理:树中不含环
3.将所有权值的方案相乘
原理:在最小生成树中对于每一种权值的合法方案构建出的图的连通情况相同
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
inline int Get()
{
int x = , s = ;
char c = getchar();
while('' > c || c > '')
{
if(c == '-') s = -;
c = getchar();
}
while('' <= c && c <= '')
{
x = (x << ) + (x << ) + c - '';
c = getchar();
}
return x * s;
}
struct shape
{
int x, y, z;
};
shape a[];
int n, m, k;
int tot;
int cnt;
int sum;
int l[];
int r[];
int s[];
int fat[];
int c[];
int u[];
inline bool rule(shape a, shape b)
{
return a.z < b.z;
}
int Find(int x)
{
while(fat[x] != x) x = fat[x];
return x;
}
void Dfs(int fig, int va, int le)
{
if(fig == s[va])
{
sum = (sum + ) % ;
if(sum == )
for(int i = ; i <= c[]; ++i)
u[i] = c[i];
// for(int i = 1; i <= c[0]; ++i) printf("%d ", c[i]);
// cout<<endl;
return;
}
for(int i = le; i <= r[va]; ++i)
{
int x = Find(a[i].x);
int y = Find(a[i].y);
int cx = fat[x];
if(x == y) continue;
fat[x] = y;
c[++c[]] = i;
Dfs(fig + , va, i + );
fat[x] = cx;
--c[];
}
}
int main()
{
n = Get(), m = Get();
for(int i = ; i <= m; ++i)
{
a[i].x = Get();
a[i].y = Get();
a[i].z = Get();
}
sort(a + , a + + m, rule);
for(int i = ; i <= n; ++i) fat[i] = i;
for(int i = ; i <= m; ++i)
{
if(a[i].z != a[i - ].z)
{
r[tot] = i - ;
++tot;
l[tot] = i;
}
if(k != n - )
{
int x = Find(a[i].x), y = Find(a[i].y);
if(x != y)
{
fat[x] = y;
++s[tot];
++k;
}
}
}
if(k != n - )
{
printf("");
return ;
}
r[tot] = m;
for(int i = ; i <= n; ++i) fat[i] = i;
int ans = ;
for(int i = ; i <= tot; ++i)
if(s[i])
{
sum = ;
Dfs(, i, l[i]);
for(int l = ; l <= u[]; ++l)
{
int x = Find(a[u[l]].x);
int y = Find(a[u[l]].y);
fat[x] = y;
}
ans = (ans * sum) % ;
}
printf("%d", ans);
}
最小生成树计数 bzoj 1016的更多相关文章
- 最小生成树的边的概念问题!!! 最小生成树的计数 bzoj 1016
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5292 Solved: 2163[Submit][St ...
- 1016: [JSOI2008]最小生成树计数 - BZOJ
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- 【BZOJ】【1016】【JSOI2008】最小生成树计数
Kruskal/并查集+枚举 唉我还是too naive,orz Hzwer 一开始我是想:最小生成树删掉一条边,再加上一条边仍是最小生成树,那么这两条边权值必须相等,但我也可以去掉两条权值为1和3的 ...
- [BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】
题目链接:BZOJ - 1016 题目分析 最小生成树的两个性质: 同一个图的最小生成树,满足: 1)同一种权值的边的个数相等 2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性 ...
- BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )
不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...
- 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)
1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...
- [BZOJ]1016 JSOI2008 最小生成树计数
最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...
- 【BZOJ】1016: [JSOI2008]最小生成树计数 深搜+并查集
最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小 ...
- 1016: [JSOI2008]最小生成树计数
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 6200 Solved: 2518[Submit][St ...
随机推荐
- 代码的坏味道(17)——夸夸其谈未来性(Speculative Generality)
坏味道--夸夸其谈未来性(Speculative Generality) 特征 存在未被使用的类.函数.字段或参数. 问题原因 有时,代码仅仅为了支持未来的特性而产生,然而却一直未实现.结果,代码变得 ...
- Git(1)
安装Git 完毕 (在开始菜单打开的话,打开的不是你想要的路径,切换路径很麻烦) 1.D盘新建 GitTest 文件夹 2.打开GitTest , 在空白的地方右键, 3.单击 Git Bash He ...
- 认识ASP.NET 5项目结构和项目文件xproj
ASP.NET 5 在项目结构上做了很大的改变,我们以前熟悉的目录结构与项目文件内容都不太一样了,本篇文章带大家了解 ASP.NET 5 到底跟以前有哪些不一样的地方. 我们先用 Visual Stu ...
- SVG:linearGradient渐变在直线上失效的问题解决方案
SVG开发里有个较为少见的问题. 对x1=x2或者y1=y2的直线(line以及path),比如: <path d="M200,10 200,100" stroke=&quo ...
- 赠书:HTML5 Canvas 2d 编程必读的两本经典
赠书:HTML5 Canvas 2d 编程必读的两本经典 这两年多一直在和HTML5 Canvas 打交道,也带领团队开发了世界首款基于HTML5 Canvas 的演示文档工具---AxeSlide( ...
- 【Java并发编程实战】----- AQS(四):CLH同步队列
在[Java并发编程实战]-–"J.U.C":CLH队列锁提过,AQS里面的CLH队列是CLH同步锁的一种变形.其主要从两方面进行了改造:节点的结构与节点等待机制.在结构上引入了头 ...
- Egret 集成第三方库 记录
引入第三方库pureMVC 这次我们要使用到一个mvc开发框架-pureMVC,熟悉as3的朋友一定也对这个框架不陌生吧.不熟悉的也没关系,这个框架不是这次的主角.我们从 这里 下载pureMVC的T ...
- ASP.NET AntiXSS的使用
下载类库: http://wpl.codeplex.com 添加程序集引用 在web.config文件中将AntiXSS类库注册为应用程序的编码器 在<system.web& ...
- Logstash时区、时间转换,message重组
适用场景 获取日志本身时间 日志时间转Unix时间 重组message 示例日志: hellow@,@world@,@2011-11-01 18:46:43 logstash 配置文件: input{ ...
- Android混合开发之WebView使用总结
前言: 今天修改项目中一个有关WebView使用的bug,激起了我总结WebView的动机,今天抽空做个总结. 混合开发相关博客: Android混合开发之WebView使用总结 Android混合开 ...