OpenCV SIFT原理与源码分析
http://blog.csdn.net/xiaowei_cqu/article/details/8069548
SIFT简介
Scale Invariant Feature Transform,尺度不变特征变换匹配算法,是由David G. Lowe在1999年(《Object Recognition from Local Scale-Invariant Features》)提出的高效区域检测算法,在2004年(《Distinctive Image Features from Scale-Invariant Keypoints》)得以完善。
SIFT特征对旋转、尺度缩放、亮度变化等保持不变性,是非常稳定的局部特征,现在应用很广泛。而SIFT算法是将Blob检测,特征矢量生成,特征匹配搜索等步骤结合在一起优化。我会更新一系列文章,分析SIFT算法原理及OpenCV 2.4.2实现的SIFT源码:
- DoG尺度空间构造(Scale-space extrema detection)
- 关键点搜索与定位(Keypoint localization)
- 方向赋值(Orientation assignment)
- 关键点描述(Keypoint descriptor)
- OpenCV实现:特征检测器FeatureDetector
- SIFT中LoG和DoG的比较
SIFT in OpenCV
构造函数:
- SIFT::SIFT(int nfeatures=0, int nOctaveLayers=3, double contrastThreshold=0.04, double edgeThreshold=
- 10, double sigma=1.6)
nfeatures:特征点数目(算法对检测出的特征点排名,返回最好的nfeatures个特征点)。
nOctaveLayers:金字塔中每组的层数(算法中会自己计算这个值,后面会介绍)。
contrastThreshold:过滤掉较差的特征点的对阈值。contrastThreshold越大,返回的特征点越少。
edgeThreshold:过滤掉边缘效应的阈值。edgeThreshold越大,特征点越多(被多滤掉的越少)。
sigma:金字塔第0层图像高斯滤波系数,也就是σ。
重载操作符:
- void SIFT::operator()(InputArray img, InputArray mask, vector<KeyPoint>& keypoints, OutputArray
- descriptors, bool useProvidedKeypoints=false)
img:8bit灰度图像
mask:图像检测区域(可选)
keypoints:特征向量矩阵
descipotors:特征点描述的输出向量(如果不需要输出,需要传cv::noArray())。
useProvidedKeypoints:是否进行特征点检测。ture,则检测特征点;false,只计算图像特征描述。
函数源码
- SIFT::SIFT( int _nfeatures, int _nOctaveLayers,
- double _contrastThreshold, double _edgeThreshold, double _sigma )
- : nfeatures(_nfeatures), nOctaveLayers(_nOctaveLayers),
- contrastThreshold(_contrastThreshold), edgeThreshold(_edgeThreshold), sigma(_sigma)
- // sigma:对第0层进行高斯模糊的尺度空间因子。
- // 默认为1.6(如果是软镜摄像头捕获的图像,可以适当减小此值)
- {
- }
主要操作还是利用重载操作符()来执行:
- void SIFT::operator()(InputArray _image, InputArray _mask,
- vector<KeyPoint>& keypoints,
- OutputArray _descriptors,
- bool useProvidedKeypoints) const
- // mask :Optional input mask that marks the regions where we should detect features.
- // Boolean flag. If it is true, the keypoint detector is not run. Instead,
- // the provided vector of keypoints is used and the algorithm just computes their descriptors.
- // descriptors – The output matrix of descriptors.
- // Pass cv::noArray() if you do not need them.
- {
- Mat image = _image.getMat(), mask = _mask.getMat();
- if( image.empty() || image.depth() != CV_8U )
- CV_Error( CV_StsBadArg, "image is empty or has incorrect depth (!=CV_8U)" );
- if( !mask.empty() && mask.type() != CV_8UC1 )
- CV_Error( CV_StsBadArg, "mask has incorrect type (!=CV_8UC1)" );
- // 得到第1组(Octave)图像
- Mat base = createInitialImage(image, false, (float)sigma);
- vector<Mat> gpyr, dogpyr;
- // 每层金字塔图像的组数(Octave)
- int nOctaves = cvRound(log( (double)std::min( base.cols, base.rows ) ) / log(2.) - 2);
- // double t, tf = getTickFrequency();
- // t = (double)getTickCount();
- // 构建金字塔(金字塔层数和组数相等)
- buildGaussianPyramid(base, gpyr, nOctaves);
- // 构建高斯差分金字塔
- buildDoGPyramid(gpyr, dogpyr);
- //t = (double)getTickCount() - t;
- //printf("pyramid construction time: %g\n", t*1000./tf);
- // useProvidedKeypoints默认为false
- // 使用keypoints并计算特征点的描述符
- if( !useProvidedKeypoints )
- {
- //t = (double)getTickCount();
- findScaleSpaceExtrema(gpyr, dogpyr, keypoints);
- //除去重复特征点
- KeyPointsFilter::removeDuplicated( keypoints );
- // mask标记检测区域(可选)
- if( !mask.empty() )
- KeyPointsFilter::runByPixelsMask( keypoints, mask );
- // retainBest:根据相应保留指定数目的特征点(features2d.hpp)
- if( nfeatures > 0 )
- KeyPointsFilter::retainBest(keypoints, nfeatures);
- //t = (double)getTickCount() - t;
- //printf("keypoint detection time: %g\n", t*1000./tf);
- }
- else
- {
- // filter keypoints by mask
- // KeyPointsFilter::runByPixelsMask( keypoints, mask );
- }
- // 特征点输出数组
- if( _descriptors.needed() )
- {
- //t = (double)getTickCount();
- int dsize = descriptorSize();
- _descriptors.create((int)keypoints.size(), dsize, CV_32F);
- Mat descriptors = _descriptors.getMat();
- calcDescriptors(gpyr, keypoints, descriptors, nOctaveLayers);
- //t = (double)getTickCount() - t;
- //printf("descriptor extraction time: %g\n", t*1000./tf);
- }
- }
函数中用到的构造金字塔: buildGaussianPyramid(base, gpyr, nOctaves);等步骤请参见文章后续系列。
OpenCV SIFT原理与源码分析的更多相关文章
- 【OpenCV】SIFT原理与源码分析:DoG尺度空间构造
原文地址:http://blog.csdn.net/xiaowei_cqu/article/details/8067881 尺度空间理论 自然界中的物体随着观测尺度不同有不同的表现形态.例如我们形 ...
- 【OpenCV】SIFT原理与源码分析:关键点描述
<SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一篇<方向赋值>,为找到的关键点即SI ...
- 【OpenCV】SIFT原理与源码分析:方向赋值
<SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一篇<关键点搜索与定位>,我们已经找到 ...
- 【OpenCV】SIFT原理与源码分析:关键点搜索与定位
<SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一步<DoG尺度空间构造>,我们得到了 ...
- 【OpenCV】SIFT原理与源码分析
SIFT简介 Scale Invariant Feature Transform,尺度不变特征变换匹配算法,是由David G. Lowe在1999年(<Object Recognition f ...
- OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波
http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 201 ...
- ConcurrentHashMap实现原理及源码分析
ConcurrentHashMap实现原理 ConcurrentHashMap源码分析 总结 ConcurrentHashMap是Java并发包中提供的一个线程安全且高效的HashMap实现(若对Ha ...
- HashMap和ConcurrentHashMap实现原理及源码分析
HashMap实现原理及源码分析 哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表, ...
- (转)ReentrantLock实现原理及源码分析
背景:ReetrantLock底层是基于AQS实现的(CAS+CHL),有公平和非公平两种区别. 这种底层机制,很有必要通过跟踪源码来进行分析. 参考 ReentrantLock实现原理及源码分析 源 ...
随机推荐
- [DevExpress]DxValidationProvider分享
前些日子从研究所临时调回公司,帮忙做另外一个项目的控件验证工作,其实内容非常的简单,就是将用户即将提交至服务器的数据先做一个本地验证,以达到减少服务器压力.提高用户体验的目的. 附上一张图片 这是官方 ...
- 【转】关于oracle with as用法
原文链接:关于oracle with as用法 with as语法–针对一个别名with tmp as (select * from tb_name) –针对多个别名with tmp as (se ...
- Codeforces Round #336 (Div. 1) A - Chain Reaction
Chain Reaction 题意:有n(1 ≤ n ≤ 100 000) 个灯泡,每个灯泡有一个位置a以及向左照亮的范围b (0 <= a <= 1e6 ,1<= b <= ...
- HDU1005 数列找规律
Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1 ...
- Protel DXP画原理图常见错误与警告
一.警告信息 警告信息对于将来转换成PCB不会造成严重问题,通常可以忽略.但它也给我们提供了一些参考,比如unconnceted pin能告诉我们芯片的哪些管脚没有连接,很有检错意义. 1.has n ...
- 在 IIS MIME 类型中添加 md 扩展名
最近在了解 Knowledge Base (知识库)的内容,对两个平台比较感兴趣,一个是 Raneto,一个是 MDwiki,两者都是使用md文件作为内容存储. 需要注意的是,使用IIS部署网站后,需 ...
- C#中通过调用Dll函数时,执行一段时间后,就会报内存可能被破坏的错的解决办法
遇到同样的问题,已经解决的:http://blog.csdn.net/youxiazzz12/article/details/24313347
- http://www.w3cplus.com/animation/create-animated-text-fills.html
关于svg的资料: http://www.w3cplus.com/animation/create-animated-text-fills.html asp.net中jquery的ajax调用cs文件 ...
- CSS3 calc() 会计算的属性
calc是英文单词calculate(计算)的缩写,是css3的一个新增的功能,你可以使用calc()给元素的border.margin.pading.font-size和width等属性设置动态值. ...
- C连接MySQL数据库开发之Linux环境完整示例演示(增、删、改、查)
一.开发环境 ReadHat6.3 32位.mysql5.6.15.gcc4.4.6 二.编译 gcc -I/usr/include/mysql -L/usr/lib -lmysqlclient ma ...