题目:

Sample Input
2 1
1 2 10
2 1
1 2 -10
3 3
1 2 4
2 3 2
3 1 5
4 5
2 3 4
4 2 5
3 4 2
3 1 0
1 2 -1
Sample Output
Infinite
Infinite
3
1

题意:

  给定一个有向图,每条边都有一个权值。每次你可以选择一个结点v和一个整数d,把所有以v为终点的边的权值减小d,把所有以v为起点的边的权值增加d,最后让所有边的权值的最小值大于零且尽量大。

分析:

  因为不同的操作互不影响,因此可以按任意顺序实施这些操作。另外,对于同一个点的多次操作可以合并,因此可以令sum(u)为作用于结点u之上的所有d之和。这样,本题的目标就是确定所有的sum(u),使得操作之后所有边权的最小值尽量大。

  “最小值最大”又让我们想到使用二分答案的方法。二分答案x之后,问题转化为是否可以让操作完毕后每条边的权值均不小于x。对于边a->b,不难发现操作完毕后它的权值为w(a,b)+sum(a)-sum(b),因此每条边a->b都可以列出一个不等式w(a,b)+sum(a)-sum(b)>=x,移项得sum(b)-sum(a)<=w(a,b)-x。这样,我们实际得到一个差分约束系统。

  差分约束系统是指一个不等式组,每个不等式形如xj-xi<=bk,这里的bk是一些事先已知的常数。这个不等式类似于最短路中的不等式d[v]<=d[u]+w(u,v),我们可以用最短路算法求解:对于约束条件xj-xi<=bk,新建一条边i->j,(根据最短路性质可以证明在图无负环的情况下这个不等式是成立的)权值为bk。如果图中有负权环,则差分约束系统无解。

代码如下:

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 510
#define Maxm 4010
#define INF 0xfffffff int n,m;
int first[Maxn],dis[Maxn],cnt[Maxn];
bool bq[Maxn],inq[Maxn]; struct node
{
int x,y,c,cc,next;
}t[Maxm];int len; int mymax(int x,int y) {return x>y?x:y;} void ins(int x,int y,int cc)
{
t[++len].x=x;t[len].y=y;t[len].cc=cc;
t[len].next=first[x];first[x]=len;
} queue<int > q; bool spfa(int s)
{
memset(inq,,sizeof(inq));
memset(dis,,sizeof(dis));
memset(cnt,,sizeof(cnt));
while(!q.empty()) q.pop();
dis[s]=;inq[s]=;q.push(s);
while(!q.empty())
{
int x=q.front();q.pop();inq[x]=;
for(int i=first[x];i;i=t[i].next)
{
int y=t[i].y;
if(dis[y]>dis[x]+t[i].c)
{
dis[y]=dis[x]+t[i].c;
if(!inq[y])
{
q.push(y);
inq[y]=;
if(++cnt[y]>n+) return ;
}
}
}
}
return ;
} bool check(int x)
{
memset(bq,,sizeof(bq));
for(int i=;i<=len-n;i++) t[i].c=t[i].cc-x;
if(spfa(n+)) return ;
/*for(int i=1;i<=n+1;i++) if(!bq[i])
{
if(spfa(i)) return 0;
}*/
return ;
} void ffind(int l,int r)
{
while(l<r)
{
int mid=(l+r+)>>;
if(check(mid)) l=mid;
else r=mid-;
}
printf("%d\n",l);
} int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(first,,sizeof(first));
int mx=-INF;len=;
for(int i=;i<=m;i++)
{
int x,y,cc;
scanf("%d%d%d",&x,&y,&cc);
ins(x,y,cc);
mx=mymax(cc,mx);
}
for(int i=;i<=n;i++)
{
ins(n+,i,);t[len].c=;
}
if(check(mx+)) {printf("Infinite\n");continue;}
if(!check()) {printf("No Solution\n");continue;}
ffind(,mx);
}
return ;
}

[UVA11478]

2016-04-10 15:33:20

【UVA11478】Halum (最短路解差分约束)的更多相关文章

  1. 【POJ1021】Intervals (最短路解差分约束)

    题目: Sample Input 5 3 7 3 8 10 3 6 8 1 1 3 1 10 11 1 Sample Output 6 题意: 我们选数,每个数只能选一次.给定n个条件[ai,bi]和 ...

  2. UVA 11478 Halum(用bellman-ford解差分约束)

    对于一个有向带权图,进行一种操作(v,d),对以点v为终点的边的权值-d,对以点v为起点的边的权值+d.现在给出一个有向带权图,为能否经过一系列的(v,d)操作使图上的每一条边的权值为正,若能,求最小 ...

  3. poj3169 最短路(差分约束)

    题意:一个农夫有n头牛,他希望将这些牛按照编号 1-n排成一条直线,允许有几头牛站在同一点,但是必须按照顺序,有一些牛关系比较好,希望站的距离不超过某个值,而有一些牛关系不太好,所以希望站的距离大于等 ...

  4. poj3159 最短路(差分约束)

    题意:现在需要分糖果,有n个人,现在有些人觉得某个人的糖果数不能比自己多多少个,然后问n最多能在让所有人都满意的情况下比1多多少个. 这道题其实就是差分约束题目,根据题中给出的 a 认为 b 不能比 ...

  5. Halum UVA - 11478(差分约束 + 二分最小值最大化)

    题意: 给定一个有向图,每条边都有一个权值,每次你可以选择一个结点v和一个整数d,把所有以v为终点的边的权值减小d,把所有以v为起点的边的权值增加d,最后要让所有边权的最小值非负且尽量大 两个特判 1 ...

  6. POJ 2983 Is the Information Reliable? 信息可靠吗 (差分约束,spfa)

    题意:有n个站排成一列,针对每个站的位置与距离关系,现有多个约束条件,约束条件分两种:(1)确定的.明确说明站a距离站b多少个单位距离.(2)不确定的.只知道a在b的左边至少1个单位距离.  根据已知 ...

  7. 【HDU3440】House Man (差分约束)

    题目: Description In Fuzhou, there is a crazy super man. He can’t fly, but he could jump from housetop ...

  8. 差分约束算法————洛谷P4878 [USACO05DEC] 布局

    题目: 不难看出题意主要是给出ml+md个格式为xi-xj<=ak的不等式,xi-xj为i,j俩头牛的距离,要我们求x1-xn的最大值. 经过上下加减我们可以将这几个不等式化成x1-xn< ...

  9. 牛客Wannafly9E 组一组 差分约束

    正解:差分约束 解题报告: 传送门! 首先肯定要想到把他们分开来考虑,就是说,把数二进制拆分掉,这样就可以分开考虑了嘛 然后考虑设f[i]:前i个数中的1的个数 然后就可以得到一堆差分约束的式子 然后 ...

随机推荐

  1. android UI生成器

    可根据选择的效果生成资源 http://jgilfelt.github.io/android-actionbarstylegenerator/#name=example&compat=sher ...

  2. Bootstrap后台使用问题汇总(一)

    第一次自己汇总写博客啊,不懂规矩,大家包涵~~ 最近进行的项目中需要一个后台,于是在网上Down了许多Bootstrap后台源码.精挑细选决定用“ACE后台管理系统”(因为是中文的,英文三级狗的小鹿还 ...

  3. Linux - 引用

    双引号 如果把文本放在双引号中,那么 shell 使用的所有特殊字符都将失去它们的特殊含义,而被看成普通字符.字符 "$"(美元符号)."\"(反斜杠).&qu ...

  4. U3D 摄像机镜头控制

    如果要实现,摄像机跟随着主角运动,还有运用滚轮实现镜头的方法和缩小的实现原理 方法1:把主摄像机放到主角的下面,作为一个子对象,调整好摄像机的视角,此时就会跟随了. 方法2:用代码让摄像机的相关的po ...

  5. 线性布局LinearLayout和相对布局RelativeLayout 之间的比较

    LinearLayout和RelativeLayout之间: 共有属性:java代码中通过btn1关联次控件android:id="@+id/btn1" 控件宽度android:l ...

  6. Android - Unable to execute dex: Multiple dex files define

    这种提示的意思是说,引用的文件重复了.在引用json解析库中,clean工程的时候,报错说: Unable to execute dex: Multiple dex files define Lorg ...

  7. Java的jLinqer包介绍

    1.介绍 熟悉C#的lambda 表达式,想要使用 LINQ 在 Java,是个问题,虽然 Java8用函数式接口已经实现了部分lambda 表达式,但是还是不够灵活. 2.Linqer简介 Linq ...

  8. MyBatis的学习总结四:实现关联表查询【参考】

    一.一对一的表关联查询(edi_test_task  和  edi_task_detail) 例子:一条任务明细对一条任务记录 对应的sql的映射xml文件如下: <?xml version=& ...

  9. jQuery 遍历同胞(siblings)

    同胞拥有相同的父元素. 通过 jQuery,您能够在 DOM 树中遍历元素的同胞元素. 在 DOM 树中水平遍历 有许多有用的方法让我们在 DOM 树进行水平遍历: siblings() next() ...

  10. 系统设计 - IOS 程序插件及功能动态更新思路

    所用框架及语言 IOS客户端-Wax(开发愤怒的小鸟的连接Lua 和 Objc的框架),Lua,Objc, 服务端-Java(用于返回插件页面)        由 于Lua脚本语言,不需要编译即可运行 ...