[LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph.
Example 1:
0 3
| |
1 --- 2 4
Given n = 5 and edges = [[0, 1], [1, 2], [3, 4]], return 2.
Example 2:
0 4
| |
1 --- 2 --- 3
Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [3, 4]], return 1.
Note:
You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
这道题让我们求无向图中连通区域的个数,LeetCode中关于图Graph的题屈指可数,解法都有类似的特点,都是要先构建邻接链表Adjacency List来做。这道题的一种解法是利用DFS来做,思路是给每个节点都有个flag标记其是否被访问过,对于一个未访问过的节点,我们将结果自增1,因为这肯定是一个新的连通区域,然后我们通过邻接链表来遍历与其相邻的节点,并将他们都标记成已访问过,遍历完所有的连通节点后我们继续寻找下一个未访问过的节点,以此类推直至所有的节点都被访问过了,那么此时我们也就求出来了连通区域的个数。
解法一:
class Solution {
public:
int countComponents(int n, vector<pair<int, int> >& edges) {
int res = ;
vector<vector<int> > g(n);
vector<bool> v(n, false);
for (auto a : edges) {
g[a.first].push_back(a.second);
g[a.second].push_back(a.first);
}
for (int i = ; i < n; ++i) {
if (!v[i]) {
++res;
dfs(g, v, i);
}
}
return res;
}
void dfs(vector<vector<int> > &g, vector<bool> &v, int i) {
if (v[i]) return;
v[i] = true;
for (int j = ; j < g[i].size(); ++j) {
dfs(g, v, g[i][j]);
}
}
};
这道题还有一种比较巧妙的方法,不用建立邻接链表,也不用DFS,思路是建立一个root数组,下标和节点值相同,此时root[i]表示节点i属于group i,我们初始化了n个部分 (res = n),假设开始的时候每个节点都属于一个单独的区间,然后我们开始遍历所有的edge,对于一条边的两个点,他们起始时在root中的值不相同,这时候我们我们将结果减1,表示少了一个区间,然后更新其中一个节点的root值,使两个节点的root值相同,那么这样我们就能把连通区间的所有节点的root值都标记成相同的值,不同连通区间的root值不相同,这样也能找出连通区间的个数。
解法二:
class Solution {
public:
int countComponents(int n, vector<pair<int, int> >& edges) {
int res = n;
vector<int> root(n);
for (int i = ; i < n; ++i) root[i] = i;
for (auto a : edges) {
int x = find(root, a.first), y = find(root, a.second);
if (x != y) {
--res;
root[y] = x;
}
}
return res;
}
int find(vector<int> &root, int i) {
while (root[i] != i) i = root[i];
return i;
}
};
类似题目:
参考资料:
https://leetcode.com/discuss/77308/accepted-dfs-in-c
https://leetcode.com/discuss/77027/c-solution-using-union-find
https://leetcode.com/discuss/76519/similar-to-number-of-islands-ii-with-a-findroot-function
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数的更多相关文章
- [LeetCode] 323. Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- LeetCode Number of Connected Components in an Undirected Graph
原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...
- LeetCode 323. Number of Connected Components in an Undirected Graph
原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...
- 323. Number of Connected Components in an Undirected Graph (leetcode)
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- Number of Connected Components in an Undirected Graph -- LeetCode
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- 【LeetCode】323. Number of Connected Components in an Undirected Graph 解题报告 (C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 并查集 日期 题目地址:https://leetcod ...
- [Swift]LeetCode323. 无向图中的连通区域的个数 $ Number of Connected Components in an Undirected Graph
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- [Locked] Number of Connected Components in an Undirected Graph
Number of Connected Components in an Undirected Graph Given n nodes labeled from 0 to n - 1 and a li ...
- 323. Number of Connected Components in an Undirected Graph按照线段添加的并查集
[抄题]: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of n ...
随机推荐
- 读书笔记--SQL必知必会18--视图
读书笔记--SQL必知必会18--视图 18.1 视图 视图是虚拟的表,只包含使用时动态检索数据的查询. 也就是说作为视图,它不包含任何列和数据,包含的是一个查询. 18.1.1 为什么使用视图 重用 ...
- 微服务和SOA服务
微服务和SOA都被认为是基于服务的架构,这意味着这两种架构模式都非常强调将“服务”作为其架构中的首要组件,用于实现各种功能(包括业务层面和非业务层面).微服务和SOA是两种差异很大的架构模式,但是他们 ...
- 开源分布式数据库中间件MyCat源码分析系列
MyCat是当下很火的开源分布式数据库中间件,特意花费了一些精力研究其实现方式与内部机制,在此针对某些较为重要的源码进行粗浅的分析,希望与感兴趣的朋友交流探讨. 本源码分析系列主要针对代码实现,配置. ...
- .NET正则表达式基础入门(四)
断言 判断某个位置左侧或者右侧是否符合匹配.常见断言有三种,单词边界.行起始/结束位置.环视.阅读本章前,建议先下载我于CSDN上传的示例代码,下载无需分数,下载链接. 1.单词边界 正则表达式&qu ...
- 8 种提升 ASP.NET Web API 性能的方法
ASP.NET Web API 是非常棒的技术.编写 Web API 十分容易,以致于很多开发者没有在应用程序结构设计上花时间来获得很好的执行性能. 在本文中,我将介绍8项提高 ASP.NET Web ...
- [修正] Firemonkey Android 显示 Emoji (颜文字)
问题:在 Android 平台下,显示 Emoji 文字,无法显示彩色(皆为黑色),例如 Edit 控件,即使将 Edit.ControlType = Platform 设为平台原生控件,还是没用(真 ...
- 在Thinkphp中使用AJAX实现无刷新分页
在Thinkphp目录的Lib\ORG\Util\目录里新建AjaxPage.class.php,写入一下内容: <?php // +------------------------------ ...
- 初探React,将我们的View标签化
前言 我之前喜欢玩一款游戏:全民飞机大战,而且有点痴迷其中,如果你想站在游戏的第一阶梯,便需要不断的练技术练装备,但是腾讯的游戏一般而言是有点恶心的,他会不断的出新飞机.新装备.新宠物,所以,很多时候 ...
- HTML中的标记-遁地龙卷风
第三版 上一版本在未经验证的情况下,盲目的认为很多东西是那样,造成错误,非常抱歉. 0.什么是标记 <input type="checkbox" checked />& ...
- ArcGIS Engine开发之地图文档保存
在对地图文档进行修改后,经常需要对其进行保存.地图文档的保存有直接保存和另存为两种方式.这里的地图文档的修改指的是修改地图文档文件记录信息,不是对空间数据的编辑. 1.地图文档保存 具体实现的思路: ...