[LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph.
Example 1:
0 3
| |
1 --- 2 4
Given n = 5 and edges = [[0, 1], [1, 2], [3, 4]], return 2.
Example 2:
0 4
| |
1 --- 2 --- 3
Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [3, 4]], return 1.
Note:
You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
这道题让我们求无向图中连通区域的个数,LeetCode中关于图Graph的题屈指可数,解法都有类似的特点,都是要先构建邻接链表Adjacency List来做。这道题的一种解法是利用DFS来做,思路是给每个节点都有个flag标记其是否被访问过,对于一个未访问过的节点,我们将结果自增1,因为这肯定是一个新的连通区域,然后我们通过邻接链表来遍历与其相邻的节点,并将他们都标记成已访问过,遍历完所有的连通节点后我们继续寻找下一个未访问过的节点,以此类推直至所有的节点都被访问过了,那么此时我们也就求出来了连通区域的个数。
解法一:
class Solution {
public:
int countComponents(int n, vector<pair<int, int> >& edges) {
int res = ;
vector<vector<int> > g(n);
vector<bool> v(n, false);
for (auto a : edges) {
g[a.first].push_back(a.second);
g[a.second].push_back(a.first);
}
for (int i = ; i < n; ++i) {
if (!v[i]) {
++res;
dfs(g, v, i);
}
}
return res;
}
void dfs(vector<vector<int> > &g, vector<bool> &v, int i) {
if (v[i]) return;
v[i] = true;
for (int j = ; j < g[i].size(); ++j) {
dfs(g, v, g[i][j]);
}
}
};
这道题还有一种比较巧妙的方法,不用建立邻接链表,也不用DFS,思路是建立一个root数组,下标和节点值相同,此时root[i]表示节点i属于group i,我们初始化了n个部分 (res = n),假设开始的时候每个节点都属于一个单独的区间,然后我们开始遍历所有的edge,对于一条边的两个点,他们起始时在root中的值不相同,这时候我们我们将结果减1,表示少了一个区间,然后更新其中一个节点的root值,使两个节点的root值相同,那么这样我们就能把连通区间的所有节点的root值都标记成相同的值,不同连通区间的root值不相同,这样也能找出连通区间的个数。
解法二:
class Solution {
public:
int countComponents(int n, vector<pair<int, int> >& edges) {
int res = n;
vector<int> root(n);
for (int i = ; i < n; ++i) root[i] = i;
for (auto a : edges) {
int x = find(root, a.first), y = find(root, a.second);
if (x != y) {
--res;
root[y] = x;
}
}
return res;
}
int find(vector<int> &root, int i) {
while (root[i] != i) i = root[i];
return i;
}
};
类似题目:
参考资料:
https://leetcode.com/discuss/77308/accepted-dfs-in-c
https://leetcode.com/discuss/77027/c-solution-using-union-find
https://leetcode.com/discuss/76519/similar-to-number-of-islands-ii-with-a-findroot-function
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数的更多相关文章
- [LeetCode] 323. Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- LeetCode Number of Connected Components in an Undirected Graph
原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...
- LeetCode 323. Number of Connected Components in an Undirected Graph
原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...
- 323. Number of Connected Components in an Undirected Graph (leetcode)
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- Number of Connected Components in an Undirected Graph -- LeetCode
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- 【LeetCode】323. Number of Connected Components in an Undirected Graph 解题报告 (C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 并查集 日期 题目地址:https://leetcod ...
- [Swift]LeetCode323. 无向图中的连通区域的个数 $ Number of Connected Components in an Undirected Graph
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- [Locked] Number of Connected Components in an Undirected Graph
Number of Connected Components in an Undirected Graph Given n nodes labeled from 0 to n - 1 and a li ...
- 323. Number of Connected Components in an Undirected Graph按照线段添加的并查集
[抄题]: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of n ...
随机推荐
- C#基础回顾(三)—索引器、委托、反射
一.前言 ------人生路 ...
- ASP.NET Core 中文文档 第三章 原理(4)路由
原文:Routing 作者:Ryan Nowak.Steve Smith. Rick Anderson 翻译:张仁建(Stoneqiu) 校对:许登洋(Seay).谢炀(kiler398).孟帅洋(书 ...
- JavaScript 随机数
JavaScript内置函数random(seed)可以产生[0,1)之间的随机数,若想要生成其它范围的随机数该如何做呢? 生成任意范围的随机数 //生成[100,120)之间的随机数 Math.fl ...
- 记录软件工程课程项目开发时遇到的各种小问题(django)
1.python manage.py makemigrations 无效/无法检测出model的变化 在修改了models.py之后,我们想要更新数据库的表,使用了python manage.py m ...
- 用python实现逻辑回归
机器学习课程的一个实验,整理出来共享. 原理很简单,优化方法是用的梯度下降.后面有测试结果. # coding=utf-8 from math import exp import matplotlib ...
- ASP.NET MVC 发送邮件(异步)
最近写邮件发送搞死人了,最后的结果,真是醉了,现整理如下: 网上一搜一大把,到处都是.NET发送邮件的方法,我这里也大同小异的写了一个. 准备一个MailHelper.cs通用类,如下所示: 重要的命 ...
- DNS报文格式(RFC1035)
一.域名和资源记录的定义 1.Name space definitions 2.资源记录定义(RR definitions) 2.1 格式 后面分析报文的时候详细解释. ...
- HTML5新增及移除的元素
HTML经过10多年的发展,其元素经历了废弃与不断重新定义的过程.为了更好的处理现在的互联网应用,HTML5新增了图形绘制.多媒体播放.页面结构.应用程序存储.网络工作等新元素.http://hove ...
- C#开发微信门户及应用(1)--开始使用微信接口
微信应用如火如荼,很多公司都希望搭上信息快车,这个是一个商机,也是一个技术的方向,因此,有空研究下.学习下微信的相关开发,也就成为日常计划的重要事情之一了.本系列文章希望从一个循序渐进的角度上,全面介 ...
- Python input 使用
Python 3.0 中使用"input" , Python 2.0 中使用"raw_input"Python 3.5: #!C:\Program Files\ ...