TensorflowTutorial_一维数据构造简单CNN
使用一维数据构造简单卷积神经网络
神经网络对于一维数据非常重要,时序数据集、信号处理数据集和一些文本嵌入数据集都是一维数据,会频繁的使用到神经网络。我们在此利用一组一维数据构造卷积层-最大池化层-全连接层的卷积神经网络。希望给大家使用CNN处理一维数据一些帮助。
参考代码
# Implementing Different Layers
# ---------------------------------------
#
# We will illustrate how to use different types
# of layers in TensorFlow
#
# The layers of interest are:
# (1) Convolutional Layer卷积层
# (2) Activation Layer激活层
# (3) Max-Pool Layer池化层
# (4) Fully Connected Layer 全连接层
#
# We will generate two different data sets for this
# script, a 1-D data set (row of data) and
# a 2-D data set (similar to picture)
import tensorflow as tf
import matplotlib.pyplot as plt
import csv
import os
import random
import numpy as np
import random
from tensorflow.python.framework import ops
ops.reset_default_graph()
# ---------------------------------------------------|
# -------------------1D-data-------------------------|
# ---------------------------------------------------|
# Create graph session 创建初始图结构
ops.reset_default_graph()
sess = tf.Session()
# parameters for the run运行参数
data_size = 25
conv_size = 5 # 卷积核宽度方向的大小
maxpool_size = 5 # 池化层核宽度方向上的大小
stride_size = 1 # 卷积核宽度方向上的步长
# ensure reproducibility 确保复现性
seed = 13
np.random.seed(seed)
tf.set_random_seed(seed)
# Generate 1D data 生成一维数据
data_1d = np.random.normal(size=data_size)
# Placeholder
x_input_1d = tf.placeholder(dtype=tf.float32, shape=[data_size])
# --------Convolution--------
def conv_layer_1d(input_1d, my_filter, stride):
# TensorFlow's 'conv2d()' function only works with 4D arrays:
# [batch, height, width, channels], we have 1 batch, and
# width = 1, but height = the length of the input, and 1 channel.
# So next we create the 4D array by inserting dimension 1's.
# 关于数据维度的处理十分关键,因为tensorflow中卷积操作只支持四维的张量,
# 所以要人为的把数据补充为4维数据[1,1,25,1]
input_2d = tf.expand_dims(input_1d, 0)
input_3d = tf.expand_dims(input_2d, 0)
input_4d = tf.expand_dims(input_3d, 3)
# Perform convolution with stride = 1, if we wanted to increase the stride,
# to say '2', then strides=[1,1,2,1]
convolution_output = tf.nn.conv2d(input_4d, filter=my_filter, strides=[1, 1, stride, 1], padding="VALID")
# Get rid of extra dimensions 去掉多余的层数,只保留数字
conv_output_1d = tf.squeeze(convolution_output)
return (conv_output_1d)
# Create filter for convolution.
my_filter = tf.Variable(tf.random_normal(shape=[1, conv_size, 1, 1]))
# Create convolution layer
my_convolution_output = conv_layer_1d(x_input_1d, my_filter, stride=stride_size)
# --------Activation--------
def activation(input_1d):
return (tf.nn.relu(input_1d))
# Create activation layer
my_activation_output = activation(my_convolution_output)
# --------Max Pool--------
def max_pool(input_1d, width, stride):
# Just like 'conv2d()' above, max_pool() works with 4D arrays.
# [batch_size=1, width=1, height=num_input, channels=1]
# 因为在处理卷积层的结果时,使用squeeze函数对结果输出进行降维,所以此处要将最大池化层的维度提升为4维
input_2d = tf.expand_dims(input_1d, 0)
input_3d = tf.expand_dims(input_2d, 0)
input_4d = tf.expand_dims(input_3d, 3)
# Perform the max pooling with strides = [1,1,1,1]
# If we wanted to increase the stride on our data dimension, say by
# a factor of '2', we put strides = [1, 1, 2, 1]
# We will also need to specify the width of the max-window ('width')
pool_output = tf.nn.max_pool(input_4d, ksize=[1, 1, width, 1],
strides=[1, 1, stride, 1],
padding='VALID')
# Get rid of extra dimensions
pool_output_1d = tf.squeeze(pool_output)
return (pool_output_1d)
my_maxpool_output = max_pool(my_activation_output, width=maxpool_size, stride=stride_size)
# --------Fully Connected--------
def fully_connected(input_layer, num_outputs):
# First we find the needed shape of the multiplication weight matrix:
# The dimension will be (length of input) by (num_outputs)
weight_shape = tf.squeeze(tf.stack([tf.shape(input_layer), [num_outputs]]))
# squeeze函数用于去掉维度为1的维度。保留数据。
# Initialize such weight
# 初始化weight
weight = tf.random_normal(weight_shape, stddev=0.1)
# Initialize the bias
# 初始化bias
bias = tf.random_normal(shape=[num_outputs])
# Make the 1D input array into a 2D array for matrix multiplication
# 将一维的数组添加一维成为2维数组
input_layer_2d = tf.expand_dims(input_layer, 0)
# Perform the matrix multiplication and add the bias
full_output = tf.add(tf.matmul(input_layer_2d, weight), bias)
# Get rid of extra dimensions
# 去掉多余的维度只保留数据
full_output_1d = tf.squeeze(full_output)
return (full_output_1d)
my_full_output = fully_connected(my_maxpool_output, 5)
# Run graph
# Initialize Variables
init = tf.global_variables_initializer()
sess.run(init)
feed_dict = {x_input_1d: data_1d}
print('>>>> 1D Data <<<<')
# Convolution Output
print('Input = array of length %d'%(x_input_1d.shape.as_list()[0])) # 25
print('Convolution w/ filter, length = %d, stride size = %d, results in an array of length %d:'%
(conv_size, stride_size, my_convolution_output.shape.as_list()[0])) # 21
print(sess.run(my_convolution_output, feed_dict=feed_dict))
# Activation Output
print('\nInput = above array of length %d'%(my_convolution_output.shape.as_list()[0])) # 21
print('ReLU element wise returns an array of length %d:'%(my_activation_output.shape.as_list()[0])) # 21
print(sess.run(my_activation_output, feed_dict=feed_dict))
# Max Pool Output
print('\nInput = above array of length %d'%(my_activation_output.shape.as_list()[0])) # 21
print('MaxPool, window length = %d, stride size = %d, results in the array of length %d'%
(maxpool_size, stride_size, my_maxpool_output.shape.as_list()[0])) # 17
print(sess.run(my_maxpool_output, feed_dict=feed_dict))
# Fully Connected Output
print('\nInput = above array of length %d'%(my_maxpool_output.shape.as_list()[0])) # 17
print('Fully connected layer on all 4 rows with %d outputs:'%
(my_full_output.shape.as_list()[0])) # 5
print(sess.run(my_full_output, feed_dict=feed_dict))
# >>>> 1D Data <<<<
# Input = array of length 25
# Convolution w/ filter, length = 5, stride size = 1, results in an array of length 21:
# [-2.63576341 -1.11550486 -0.95571411 -1.69670296 -0.35699379 0.62266493
# 4.43316031 2.01364899 1.33044648 -2.30629659 -0.82916248 -2.63594174
# 0.76669347 -2.46465087 -2.2855041 1.49780679 1.6960566 1.48557389
# -2.79799461 1.18149185 1.42146575]
#
# Input = above array of length 21
# ReLU element wise returns an array of length 21:
# [ 0. 0. 0. 0. 0. 0.62266493
# 4.43316031 2.01364899 1.33044648 0. 0. 0.
# 0.76669347 0. 0. 1.49780679 1.6960566 1.48557389
# 0. 1.18149185 1.42146575]
#
# Input = above array of length 21
# MaxPool, window length = 5, stride size = 1, results in the array of length 17
# [ 0. 0.62266493 4.43316031 4.43316031 4.43316031 4.43316031
# 4.43316031 2.01364899 1.33044648 0.76669347 0.76669347 1.49780679
# 1.6960566 1.6960566 1.6960566 1.6960566 1.6960566 ]
#
# Input = above array of length 17
# Fully connected layer on all 4 rows with 5 outputs:
# [ 1.71536088 -0.72340977 -1.22485089 -2.5412786 -0.16338299]
参考文献
TensorFlow机器学习实战指南
TensorflowTutorial_一维数据构造简单CNN的更多相关文章
- TensorflowTutorial_二维数据构造简单CNN
使用二维数据构造简单卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 图像和一些时序数据集都可以用二维数据的形式表现,我们此次使用随机分布的二位数据构造一个简单的CNN-网络卷积- ...
- TersorflowTutorial_MNIST数据集上简单CNN实现
MNIST数据集上简单CNN实现 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 Tensorflow机器学习实战指南 源代码请点击下方链接欢迎加星 Tesorflow实现基于MNI ...
- Tensorflow简单CNN实现
觉得有用的话,欢迎一起讨论相互学习~Follow Me 少说废话多写代码~ """转换图像数据格式时需要将它们的颜色空间变为灰度空间,将图像尺寸修改为同一尺寸,并将标签依 ...
- 图解Redis之数据结构篇——简单动态字符串SDS
图解Redis之数据结构篇--简单动态字符串SDS 前言 相信用过Redis的人都知道,Redis提供了一个逻辑上的对象系统构建了一个键值对数据库以供客户端用户使用.这个对象系统包括字符串对象 ...
- LeetCode总结 -- 一维数据合并篇
合并是一维数据结构中非经常见的操作, 一般是排序, 分布式算法中的子操作. 这篇总结主要介绍LeetCode中关于合并的几个题目: Merge Two Sorted ListsMerge Sorted ...
- pytorch批训练数据构造
这是对莫凡python的学习笔记. 1.创建数据 import torch import torch.utils.data as Data BATCH_SIZE = 8 x = torch.linsp ...
- 通过 UDP 发送数据的简单范例
package j2se.core.net.udp; import java.io.IOException;import java.net.DatagramPacket;import java.net ...
- MapReduce实例-NASA博客数据频度简单分析
环境: Hadoop1.x,CentOS6.5,三台虚拟机搭建的模拟分布式环境,gnuplot, 数据:http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.htm ...
- RapidMiner的基本使用(一个医疗数据的简单决策树算法分析)
RapidMiner的基本使用(一个医疗数据的简单决策树算法分析) RapidMiner的基本使用(一个医疗数据的简单决策树算法分析) 需要分析的文件: 右键分别创建读取excel数据,选择属性,设置 ...
随机推荐
- Java入门篇(二)——Java语言基础(上)
本篇我们开始进入Java的学习,首先在学习如何编写Java语言前要先了解Java程序的基本结构. 一.Java程序的基本结构 一个Java程序的基本结构大体可以分为包.类.main()主方法.标识符. ...
- Java Web应用集成OSGI
对OSGI的简单理解 就像Java Web应用程序需要运行在Tomcat.Weblogic这样的容器中一样.程序员开发的OSGI程序包也需要运行在OSGI容器中.目前主流的OSGI容器包括:Apach ...
- deeplearning.ai 卷积神经网络 Week 1 卷积神经网络 听课笔记
1. 传统的边缘检测(比如Sobel)手工设计了3*3的filter(或者叫kernel)的9个权重,在深度学习中,这9个权重都是学习出来的参数,会比手工设计的filter更好,不但可以提取90度.0 ...
- spring是什么???
1.是一个容器 2.用于降低代码间的耦合度3.根据不同的代码采用ioc和aop两种技术解耦合...
- RPM包效验
- Git 忽略提交 .gitignore
在使用Git的过程中,我们喜欢有的文件比如日志,临时文件,编译的中间文件等不要提交到代码仓库,这时就要设置相应的忽略规则,来忽略这些文件的提交. Git 忽略文件提交的方法 有三种方法可以实现忽略Gi ...
- FSFS和VDFS存储方式的区别
简单来说这个是VisualSVN基于FSFS文件系统格式扩展的.也就是说,分布式版本管理DVCS兴起之后,大家发现多个仓库的好处了,开始给SVN增加这个功能. 至于FSFS本身是SVN在2004年开始 ...
- dedecms织梦上传图片302Error错误
很多客户反馈这样的问题,上传图片的时候会提示302错误,找不到原因,很着急,秀站网小编分析下如下解决办法,希望能帮助大家. 解决问题: 1:空间满了,请查看空间容量是否满了. 2:权限问题... 很多 ...
- 查看php的配置文件Php.ini的位置
标签:php服务器 浏览器 配置文件 Linux local 近来,有不博友问php.ini存在哪个目录下?或者修改php.ini以后为何没有生效?基于以上两个问题,我觉得有必要教一下刚接触PHP的博 ...
- Effective Java 第三版——27. 消除非检查警告
Tips <Effective Java, Third Edition>一书英文版已经出版,这本书的第二版想必很多人都读过,号称Java四大名著之一,不过第二版2009年出版,到现在已经将 ...