Description

  自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?

Input

  第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1

Output

  一个整数,表示不同的满足要求的树的个数,无解输出0

Sample Input

3
1
-1
-1

Sample Output

2

HINT

  两棵树分别为1-2-3;1-3-2

该题运用到了树的prufer编码的性质:
  (1)树的prufer编码的实现
        不断 删除树中度数为1的最小序号的点,并输出与其相连的节点的序号  直至树中只有两个节点
  (2)通过观察我们可以发现
        任意一棵n节点的树都可唯一的用长度为n-2的prufer编码表示
        度数为m的节点的序号在prufer编码中出现的次数为m-1
  (3)怎样将prufer编码还原为一棵树??
        从prufer编码的最前端开始扫描节点,设该节点序号为 u ,寻找不在prufer编码的最小序号且没有被标记的节点 v ,连接   u,v,并标记v,将u从prufer编码中删除。扫描下一节点。
该题需要将树转化为prufer编码
因为一个点度为di,那么在prufer序列中出现di-1次
所以对于已知的度,sum=∑di-1(已知),cnt为有多少已知点
那么从序列中选出sum为方案C(sum,n-2)
对于已知di,产生的方案数为${{(n-2)!} \over {\prod (d_i - 1)}!}$
对于无限制的点,可以这样考虑,剩下的n-2-sum为每一位选择都有n-cnt种
所以方案为(n-cnt)n-2-sum
把三者乘起来
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
struct Big_Num
{
int a[],len;
Big_Num()
{}
Big_Num &operator *=(const int &b)
{int i;
for (i=;i<=len;i++)
a[i]*=b;
for (i=;i<=len;i++)
a[i+]+=a[i]/,a[i]%=;
int loc=len+;
while (a[loc])
{
a[loc+]+=a[loc]/;
a[loc]%=;
loc++;
}
len=loc-;
}
void print()
{int i;
for (i=len;i>=;i--) printf("%d",a[i]);
cout<<endl;
}
}ans;
int d[],du[],pri[],pre[],tot,n,cnt,sum,flag;
bool vis[];
int main()
{int i,j;
freopen("tree1.in","r",stdin);
freopen("1005.out","w",stdout);
cin>>n;
flag=;
for (i=;i<=n;i++)
{
scanf("%d",&d[i]);
if (d[i]!=-) cnt++,sum+=d[i]-;
if (d[i]==||d[i]==n) flag=;
}
if (n==)
{
cout<<;
return ;
}
if (n==)
{
if ((d[]==||d[]>)||(d[]==||d[]>))
cout<<;
else cout<<;
return ;
}
if (sum>n-)
{
cout<<;
return ;
}
if (flag)
{
cout<<;
return ;
}
for (i=;i<=n-;i++)
du[i]++;
for (i=;i<=n--sum;i++)
du[i]--;
for (i=;i<=n;i++)
if (d[i]!=-)
{
for (j=;j<=d[i]-;j++)
du[j]--;
}
for (i=;i<=n--sum;i++)
du[n-cnt]++; for (i=;i<=;i++)
{
if (vis[i]==)
{
pri[++tot]=i;
pre[i]=i;
}
for (j=;j<=tot;j++)
{
if (pri[j]*i>) break;
vis[i*pri[j]]=;
pre[i*pri[j]]=pri[j];
if (i%pri[j]==) break;
}
}
for (i=;i>=;i--)
if (pre[i]!=i)
{
du[pre[i]]+=du[i];
du[i/pre[i]]+=du[i];
du[i]=;
}
ans.a[]=;ans.len=;
for (i=;i<=;i++)
if (du[i]>)
{
for (j=;j<=du[i];j++)
ans*=i;
}
ans.print();
}

[HNOI2008]明明的烦恼的更多相关文章

  1. BZOJ 1005 [HNOI2008] 明明的烦恼(组合数学 Purfer Sequence)

    题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...

  2. bzoj1005 [HNOI2008]明明的烦恼

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3032  Solved: 1209 Description ...

  3. 【bzoj1005】[HNOI2008]明明的烦恼

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4175  Solved: 1660[Submit][Stat ...

  4. BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数

    1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  5. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

  6. BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )

    首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了.算个可重集的排列数和组合数 ...

  7. 【BZOJ1005】[HNOI2008]明明的烦恼(prufer序列)

    [BZOJ1005][HNOI2008]明明的烦恼(prufer序列) 题面 BZOJ 洛谷 题解 戳这里 #include<iostream> #include<cstdio> ...

  8. 【BZOJ 1005】 1005: [HNOI2008]明明的烦恼 (prufer数列+高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4981  Solved: 1941 Description ...

  9. BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5786  Solved: 2263[Submit][Stat ...

  10. 【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度

    [BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可 ...

随机推荐

  1. 数据结构基础——指针及动态内存分配(malloc)

    一.指针 C语言中的指针是一种数据类型,比如说我们用int *a;就定义了一个指针a,它指向一个int类型的数.但是这个指针是未初始化的,所以,一般的,我们都在创建指针时初始化它,以免出错,在还不吃的 ...

  2. 小草手把手教你 LabVIEW 串口仪器控制——初识VISA串口

    有些人,学习一样东西时候,喜欢现成的例子.很多人学习一门技术,都喜欢现成的例子开始,比如学单片机的啊,最开始都是修改的例子吧,学语言的也是.最开始都是模仿.这个年头看书上的理论知识太浪费时间了.所以啊 ...

  3. JS页面跳转的常用方法整理.

    <script type="text/javascript"> //js页面跳转 function showtabs() { window.location.href ...

  4. django报错Manager isn't accessible via UserInfo instances

    出现这种错误是因为调用模型对象时使用了变量名,而不是对象名(模型类),例如: user = UserInfo()user_li = user.objects.filter(uname=username ...

  5. Mego开发文档 - 处理并发冲突

    处理并发冲突 数据库并发是指多个进程或用户同时访问或更改数据库中的相同数据的情况.并发控制是指用于确保存在并发更改时数据一致性的特定机制. Mego实现了乐观并发控制,这意味着它可以让多个进程或用户独 ...

  6. Bootstrap 栅格系统简单整理

    Bootstrap内置了一套响应式.移动设备优先的流式栅格系统,随着屏幕设备或视口(viewport)尺寸的增加,系统会自动分为最多12列. 总结一下我近期的学习Bootstrap的一些理解: 一.. ...

  7. 判断一个字符串是不是一个合法的IP地址

    最近在笔试的时候遇到碰一道算法题, 要求判断一个字符串是不是合法的ip地址. 将我的思路发出来分享一下,不一定正确,也不一定是最优的方法.希望能分享一些交流 要求用java或者c来实现,我的java代 ...

  8. eclipse使用git及github学习笔记

    项目托管 1.首先需要在github上建立一个远端仓库  点击Create repository后,会在github上建立相应的git仓库,并会出现如下界面: 复制https或者ssh的仓库地址,远端 ...

  9. Android 自定义控件高度设置onMeasure方法

    最近使用hellocharts需要表格横向显示,而activity需要竖屏显示,在旋转以后,默认宽度为不超过屏幕宽度,则一直无法显示全控件. 此时需要修改onMeasure方法,这个方法是用来控制控件 ...

  10. Vue框架

    Vue框架 环境: windows python3.6.2 Vue的cdn: <script src="https://cdn.jsdelivr.net/npm/vue"&g ...