Description

  自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?

Input

  第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1

Output

  一个整数,表示不同的满足要求的树的个数,无解输出0

Sample Input

3
1
-1
-1

Sample Output

2

HINT

  两棵树分别为1-2-3;1-3-2

该题运用到了树的prufer编码的性质:
  (1)树的prufer编码的实现
        不断 删除树中度数为1的最小序号的点,并输出与其相连的节点的序号  直至树中只有两个节点
  (2)通过观察我们可以发现
        任意一棵n节点的树都可唯一的用长度为n-2的prufer编码表示
        度数为m的节点的序号在prufer编码中出现的次数为m-1
  (3)怎样将prufer编码还原为一棵树??
        从prufer编码的最前端开始扫描节点,设该节点序号为 u ,寻找不在prufer编码的最小序号且没有被标记的节点 v ,连接   u,v,并标记v,将u从prufer编码中删除。扫描下一节点。
该题需要将树转化为prufer编码
因为一个点度为di,那么在prufer序列中出现di-1次
所以对于已知的度,sum=∑di-1(已知),cnt为有多少已知点
那么从序列中选出sum为方案C(sum,n-2)
对于已知di,产生的方案数为${{(n-2)!} \over {\prod (d_i - 1)}!}$
对于无限制的点,可以这样考虑,剩下的n-2-sum为每一位选择都有n-cnt种
所以方案为(n-cnt)n-2-sum
把三者乘起来
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
struct Big_Num
{
int a[],len;
Big_Num()
{}
Big_Num &operator *=(const int &b)
{int i;
for (i=;i<=len;i++)
a[i]*=b;
for (i=;i<=len;i++)
a[i+]+=a[i]/,a[i]%=;
int loc=len+;
while (a[loc])
{
a[loc+]+=a[loc]/;
a[loc]%=;
loc++;
}
len=loc-;
}
void print()
{int i;
for (i=len;i>=;i--) printf("%d",a[i]);
cout<<endl;
}
}ans;
int d[],du[],pri[],pre[],tot,n,cnt,sum,flag;
bool vis[];
int main()
{int i,j;
freopen("tree1.in","r",stdin);
freopen("1005.out","w",stdout);
cin>>n;
flag=;
for (i=;i<=n;i++)
{
scanf("%d",&d[i]);
if (d[i]!=-) cnt++,sum+=d[i]-;
if (d[i]==||d[i]==n) flag=;
}
if (n==)
{
cout<<;
return ;
}
if (n==)
{
if ((d[]==||d[]>)||(d[]==||d[]>))
cout<<;
else cout<<;
return ;
}
if (sum>n-)
{
cout<<;
return ;
}
if (flag)
{
cout<<;
return ;
}
for (i=;i<=n-;i++)
du[i]++;
for (i=;i<=n--sum;i++)
du[i]--;
for (i=;i<=n;i++)
if (d[i]!=-)
{
for (j=;j<=d[i]-;j++)
du[j]--;
}
for (i=;i<=n--sum;i++)
du[n-cnt]++; for (i=;i<=;i++)
{
if (vis[i]==)
{
pri[++tot]=i;
pre[i]=i;
}
for (j=;j<=tot;j++)
{
if (pri[j]*i>) break;
vis[i*pri[j]]=;
pre[i*pri[j]]=pri[j];
if (i%pri[j]==) break;
}
}
for (i=;i>=;i--)
if (pre[i]!=i)
{
du[pre[i]]+=du[i];
du[i/pre[i]]+=du[i];
du[i]=;
}
ans.a[]=;ans.len=;
for (i=;i<=;i++)
if (du[i]>)
{
for (j=;j<=du[i];j++)
ans*=i;
}
ans.print();
}

[HNOI2008]明明的烦恼的更多相关文章

  1. BZOJ 1005 [HNOI2008] 明明的烦恼(组合数学 Purfer Sequence)

    题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...

  2. bzoj1005 [HNOI2008]明明的烦恼

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3032  Solved: 1209 Description ...

  3. 【bzoj1005】[HNOI2008]明明的烦恼

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4175  Solved: 1660[Submit][Stat ...

  4. BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数

    1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  5. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

  6. BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )

    首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了.算个可重集的排列数和组合数 ...

  7. 【BZOJ1005】[HNOI2008]明明的烦恼(prufer序列)

    [BZOJ1005][HNOI2008]明明的烦恼(prufer序列) 题面 BZOJ 洛谷 题解 戳这里 #include<iostream> #include<cstdio> ...

  8. 【BZOJ 1005】 1005: [HNOI2008]明明的烦恼 (prufer数列+高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4981  Solved: 1941 Description ...

  9. BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5786  Solved: 2263[Submit][Stat ...

  10. 【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度

    [BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可 ...

随机推荐

  1. 福州大学软件1715|W班-助教卞倩虹个人简介

    各位好,我是卞倩虹 本科阶段的专业是网络工程,通过学校的学习我掌握了基础的网络组网配置技术,常常在机房配置路由器和交换机等相关设备.后来我接触了软件编程,在深入了解和学习后编程语言后,自主开发了一些项 ...

  2. C语言二维数组作业

    一.PTA实验作业 题目1:7-3 出生年 1. 本题PTA提交列表 2. 设计思路 1.声明一个函数different()用来计算一个年份的不同数字个数 2.定义y(y是来计算符合要求的年份的量), ...

  3. HTML标签小记文本类标签

    文本类标签: <input type="text" name="" value="">文本框  type(方式,方法)name文 ...

  4. Solr搜索引擎搭建详细过程

    1    什么是solr Solr 是Apache下的一个顶级开源项目,采用Java开发,它是基于Lucene的全文搜索服务器.Solr可以独立运行在Jetty.Tomcat等这些Servlet容器中 ...

  5. http缓存浅谈

    我们在访问百度首页的时候,会发现不管怎么刷新页面,静态资源基本都是返回 200(from cache): 随便点开一个静态资源是酱的: 哎哟有Response报头数据呢,看来服务器也正常返回了etag ...

  6. sts 和 lombok

    1.安装lombok.jar到sts.exe所在目录 如果是eclipse,需要放到eclipse.exe所在目录,同理myeclipse. 2.修改sts.ini配置使用lombok 如果是ecli ...

  7. Linux知识积累(5) 关机shutdown和重启reboot

    Linux centos关机与重启命令详解与实战 Linux centos重启命令: 1.reboot 2.shutdown -r now 立刻重启(root用户使用) 3.shutdown -r 1 ...

  8. (数字IC)低功耗设计入门(八)——物理级低功耗设计&to be continued?

    前面学习了从系统级到门级的低功耗设计,现在简单地了解了一下物理级设计.由于物理级的低功耗设计与后端有关了,这里就不详细学习了.这里主要是学习了一些基本原则,在物理级,进行低功耗设计的基本原则是:    ...

  9. 前端学习之jquery

    前端学习之jquery 1.   什么是jQuery对象? jQuery对象就是通过jQuery包装DOM对象后产生的对象.jQuery对象是jQuery独有的.如果一个对象是jQuery对象,那么它 ...

  10. Mysql:查用的基本操作

    查看MySQL提供什么存储引擎: mysql> show engines; 查看MySQL当前默认的存储引擎: mysql> show variables like '%storage_e ...