[SCOI2005]最大子矩阵
题目描述
这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。
输入输出格式
输入格式:
第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的分值的绝对值不超过32767)。
输出格式:
只有一行为k个子矩阵分值之和最大为多少。
输入输出样例
3 2 2
1 -3
2 3
-2 3
9
分m=1和m=2两种情况考虑。
m=1时,预处理出前缀和sum[]。
设f[i][j]为到达第i格,已经放了j个子矩阵的最大和,
那么每次先把f[i][j]的值设为f[i-1][j](第i个元素不属于第j个子矩阵)
剩下的情况就是第i个元素属于第j个子矩阵了。
这时候用max(f[p-1][j-1]+(sum[i]-sum[p-1]), 1<=p<=i)更新f[i][j]的最大值,即枚举第j个子矩阵的起始点。
最终答案为f[n][k]。(边界条件为f[0][j]=0,包含空矩阵)
m=2时,预处理出分别列的前缀和sum1[],sum2[]。
设f[i][j][l]为在第1列到达第i格,第2列到达第j格,已经放了l个子矩阵的最大和,
那么每次先把f[i][j][l]的值设为max(f[i-1][j][l],f[i][j-1][l])(第i行第1列不属于子矩阵或第j行第2列不属于子矩阵,两者取较大值)
剩下的情况就是第i行第1列和第j行第2列都属于子矩阵了。
分两种情况:
一、第i行第1列和第j行第2列属于不同的子矩阵
分别枚举第i行第1列所在子矩阵的起始点和第j行第2列所在子矩阵的起始点并更新答案,
即用max(f[p-1][j][l-1]+(sum1[i]-sum1[p-1]), 1<=p<=i)和max(f[i][p-1][l-1]+(sum2[j]-sum2[p-1]),1<=p<=j)更新f[i][j]的最大值。
二、第i行第1列和第j行第2列属于同一子矩阵
仅当i==j时才包含这种情况(因为i和j要作为当前状态中子矩阵的末尾)。这时候这个子矩阵的列数必定为2。
还是一样枚举子矩阵的起始点,
在i==j的条件下用max(f[p-1][p-1][l-1]+(sum1[i]-sum1[p-1])+(sum2[j]-sum2[p-1]),1<=p<=i)更新答案。
最后答案为f[n][n][k](边界条件为f[0][0][l]=0,包含空矩阵)
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
int f1[][],f2[][][],a[][],sum1[],sum2[];
int n,m,k;
int main()
{int i,j,l,p;
cin>>n>>m>>k;
for (i=;i<=n;i++)
{
for (j=;j<=m;j++)
{
scanf("%d",&a[i][j]);
if (j==) sum1[i]=sum1[i-]+a[i][j];
else sum2[i]=sum2[i-]+a[i][j];
}
}
if (m==)
{
for (i=;i<=n;i++)
for (j=;j<=k;j++)
{f1[i][j]=f1[i-][j];
for (l=;l<=i;l++)
f1[i][j]=max(f1[i][j],f1[l-][j-]+sum1[i]-sum1[l-]);
}
cout<<f1[n][k];
}
else
{
for (i=;i<=n;i++)
{
for (j=;j<=n;j++)
{
for (l=;l<=k;l++)
{f2[i][j][l]=max(f2[i-][j][l],f2[i][j-][l]);
for (p=;p<=i;p++)
f2[i][j][l]=max(f2[i][j][l],f2[p-][j][l-]+sum1[i]-sum1[p-]);
for (p=;p<=j;p++)
f2[i][j][l]=max(f2[i][j][l],f2[i][p-][l-]+sum2[j]-sum2[p-]);
if (i==j)
for (p=;p<=i;p++)
f2[i][j][l]=max(f2[i][j][l],f2[p-][p-][l-]+sum2[j]-sum2[p-]+sum1[i]-sum1[p-]);
}
}
}
cout<<f2[n][n][k];
}
}
[SCOI2005]最大子矩阵的更多相关文章
- BZOJ 1084: [SCOI2005]最大子矩阵 DP
1084: [SCOI2005]最大子矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n* ...
- 1084: [SCOI2005]最大子矩阵
1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1325 Solved: 670[Submit][Stat ...
- bzoj千题计划198:bzoj1084: [SCOI2005]最大子矩阵
http://www.lydsy.com/JudgeOnline/problem.php?id=1084 m=1: dp[i][j] 前i个数,选了j个矩阵的最大和 第i个不选:由dp[i-1][j] ...
- 【BZOJ 1084】 1084: [SCOI2005]最大子矩阵 (DP)
1084: [SCOI2005]最大子矩阵 Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第 ...
- BZOJ(6) 1084: [SCOI2005]最大子矩阵
1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3566 Solved: 1785[Submit][Sta ...
- [Luogu 2331] [SCOI2005]最大子矩阵
[Luogu 2331] [SCOI2005]最大子矩阵 题目描述 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 输入输出格式 ...
- 洛谷P2331 [SCOI2005]最大子矩阵 DP
P2331 [SCOI2005]最大子矩阵 题意 : 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 第一行为n,m,k(1≤n≤ ...
- [bzoj1084][SCOI2005]最大子矩阵_动态规划_伪·轮廓线dp
最大子矩阵 bzoj-1084 SCOI-2005 题目大意:给定一个n*m的矩阵,请你选出k个互不重叠的子矩阵使得它们的权值和最大. 注释:$1\le n \le 100$,$1\le m\le 2 ...
- luogu P2331 [SCOI2005]最大子矩阵
传送门 \[\huge\mathit{warning}\] \[\small\text{以下说明文字高能,请心脏病,,,,,,人士谨慎观看,请未成年人在家长陪同下观看}\] 皮这一下很开心 其实是代码 ...
随机推荐
- 2018上C语言程序设计(高级)作业- 第1次作业
未来两周学习内容 复习指针的定义和引用 指针的应用场景: 指针作为函数参数(角色互换) 指针作为函数的参数返回多个值 指针.数组和地址间的关系 使用指针进行数组操作 数组名(指针)作为函数参数(冒泡排 ...
- 第一次作业:扑通扑通 我的IT
让我掉下眼泪的不止昨夜的酒,还有这满屏的代码. 第一部分:结缘计算机 你为什么选择计算机专业?你认为你的条件如何?和这些博主比呢? 在炎炎的夏日,伴随这高三的结束,我也面临大学专业的选择,我看着书里密 ...
- JAVA反射机制基础概念
反射机制:所谓的反射机制就是java语言在运行时拥有一项自观的能力.通过这种能力可以彻底的了解自身的情况为下一步的动作做准备.下面具体介绍一下java的反射机制.这里你将颠覆原来对java的理解. J ...
- zookeeper 启动失败 BindException: Address already in use 或者Error contacting service. It is probably not running
平台:centos-6.3-i386 jdk-7u51 storm 0.9.1 python 2.6.6 hadoop 1.2.1 今天上午装storm的时候遇到这个问题,好郁闷.把网上介绍的方法 ...
- pop 一个viewController时候会有键盘闪现出来又消失
原因是alertview关闭影响了系统其他的动画导致的.要么延迟调用,要么自己做一个alertview. iOS 8.3,dismiss alert view时系统会尝试恢复之前的keyboard i ...
- Struts2之配置
Struts2的默认配置文件是struts.xml放在/web-inf/classes目录下,struts配置文件的最大作用就是配置Action与请求之间的对应关系,并配置逻辑视图名和物理视图名之间的 ...
- bzoj千题计划271:bzoj4869: [六省联考2017]相逢是问候
http://www.lydsy.com/JudgeOnline/problem.php?id=4869 欧拉降幂+线段树,每个数最多降log次,模数就会降为1 #include<cmath&g ...
- PHP获取短信验证码
PHP如何获取短信验证码?以下是创蓝253短信平台下的PHP接口代码案例: <?php header("Content-type:text/html; charset=UTF-8& ...
- 申请JetBrains学生免费注册码
1.申请.edu.*后缀的邮箱 从某个知乎用户上面得到了两个可以申请的后缀edu的邮箱 上海交通大学校友统一身份认证:https://register.alumni.sjtu.edu.cn/alumn ...
- 新概念英语(1-109)A Good Idea
Lesson 109 A good idea 好主意 Listen to the tape then answer this question. What does Jane have with he ...