因数(factor)
一个最基本的算数法则就是大于1的整数都能用1个或多个素数相乘的形式表示出来。当然,有多种质因子排列方案
如:
10=2×5=5×2 20=5×2×2=2×5×2=2×2×5
用f(k)表示k的质因数排列数,f(10)=2,f(20)=3
给一个n,至少有一个k满足f(k)=n的最小k
输出格式:n和k
输入:
1
2
3
105
输出:
1 2
2 6
3 12
105 720
数据范围
n,k<2^63
我们令k=∏piei
S=∑ei
f(k)=S!/(∏ei!)
解释一下:S是所有因数的个数,ei是每一种因数的个数
显然不考虑重复的情况时方案为S!
那么算上重复的会怎样?
1112是已定的
如果是算总方案显然4!,那么111会导致的重复方案是3!2导致的重复方案为1!
所以有了以上结论
那么我们有了一种方法:枚举k得到n
显然不行
那么是否可以试一下已知n,得到k?
已知对于一个指数e,如果在可行条件下,那么它显然优先给最小的质因数,这能导致k最小
搜索+剪枝实现
剪枝1:上面说的优先给小的素数,就是说ei要单调递增,因为如果ei>ej,i>j,那么显然把ei与ej
交换才能最优
剪枝2:假设你每举了t素数的指数e
就要把n除以 ((S-e+1)*...*S) /e!
如何高效算出?
原式=>S!/(e!*(S-e)!)
这不就是C(S,S-e)吗?
预处理出C,然后每一层枚举一个素数的指数,然后向下
剪枝3:最优性剪枝,当前k>ans 则退出
预处理幂不说了
但记住无论是幂,还是k,都不能超过(1<<63)-1
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int pr[]={,,,,,,,,,,,,,,};
long long pw[][],C[][],ans;
long long inf;
long long min(long long a,long long b)
{
if (a<b) return a;
else return b;
}
void dfs(int t,long long now,long long pre,long long s,int down)
{
if (s>ans) return;
if (now==)
{
ans=min(ans,s);
return;
}
if (t>) return;
for (int i=pre+;i<=min(pre+down,);i++)
if (now%C[i][i-pre]==&&pw[t][i-pre]&&s<=inf/pw[t][i-pre])
dfs(t+,now/C[i][i-pre],i,s*pw[t][i-pre],i-pre);
}
void ask_ans(long long k)
{
ans=inf;
dfs(,k,,,);
ans=max(ans,);
}
int main()
{int i,j,k;
freopen("factor.in","r",stdin);
freopen("factor.out","w",stdout);
C[][]=;
for (i=;i<;i++)
{
C[i][]=C[i][i]=;
for (j=;j<i;j++)
C[i][j]=C[i-][j-]+C[i-][j];
}
for (i=;i<=;i++)
{
pw[i][]=;
for (j=;j<=;j++)
{
if (i&&pw[i][j-]>inf/pr[i]) break;
pw[i][j]=pw[i][j-]*pr[i];
}
if (i==)
inf=pw[][]-;
}
while (cin>>k)
{
ask_ans(k);
cout<<k<<' '<<ans<<endl;
}
}
因数(factor)的更多相关文章
- [linux]收集一些好玩的命令
1.rev命令 反转输出,输入的字符串. 在终端中输入:rev 输入需要字符串(支持中文) 2.asciiview命令 安装aview:apt-get install aview 再安装imagema ...
- 1049. Counting Ones (30)
题目如下: The task is simple: given any positive integer N, you are supposed to count the total number o ...
- python常用标准库(math数学模块和random随机模块)
常用的标准库 数学模块 import math ceil -- 上取整 对一个数向上取整(进一法),取相邻最近的两个整数的最大值. import math res = math.ceil(4.1) p ...
- 254. Factor Combinations 返回所有因数组合
[抄题]: Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write ...
- The largest prime factor(最大质因数)
1. 问题: The prime factors of 13195 are 5, 7, 13 and 29.What is the largest prime factor of the number ...
- R语言学习——欧拉计划(3)Largest prime factor 求最大质因数
The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor of the number 60085 ...
- 抓其根本(一)(hdu2710 Max Factor 素数 最大公约数 最小公倍数.....)
素数判断: 一.根据素数定义,该数除了1和它本身以外不再有其他的因数. 详见代码. int prime() { ; i*i<=n; i++) { ) //不是素数 ; //返回1 } ; //是 ...
- 积性函数&线性筛&欧拉函数&莫比乌斯函数&因数个数&约数个数和
只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 ...
- [LeetCode] Factor Combinations 因子组合
Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...
随机推荐
- Beta 第三天
今天遇到的困难: 组员对github极度的不适应 github的版本控制和协同化编程确实操作起来需要一定的熟练度,我们缺乏这种熟练度 Android Studio版本不一致项目难以打开的问题仍然无法解 ...
- 敏捷冲刺每日报告五(Java-Team)
第五天报告(10.29 周日) 团队:Java-Team 成员: 章辉宇(284) 吴政楠(286) 陈阳(PM:288) 韩华颂(142) 胡志权(143) github地址:https://gi ...
- 20145237 实验二 “Java面向对象程序设计”
20145237 实验二 “Java面向对象程序设计” 实验内容 • 理解并掌握面向对象三要素:封装.继承.多态 • 初步掌握UML建模 • 熟悉S.O.L.I.D原则 • 使用TDD设计实现复数类 ...
- XFTP连接主机文件名显示中文乱码且不能下载的解决方法
Xftp连接主机文件名显示中文乱码且不能下载的本地解决方法 原因:Xftp编码格式问题 解决方法:把Xftp的编码格式增加UTF-8 具体步骤:打开Xftp,文件-属性,在打开的属性界面中打开&quo ...
- UTF-8 UTF-16 UTF-32 最根本的区别?
昨天看书的时候突然发现UTF-16 我好像还没见过这个东西 也可能忘记了 反正现在对自己科普一下吧 最根本的区别 UTF-32 把所有的字符都用32bit -- 4个字节 来表示 UTF-16 和 ...
- System V IPC 之消息队列
消息队列和共享内存.信号量一样,同属 System V IPC 通信机制.消息队列是一系列连续排列的消息,保存在内核中,通过消息队列的引用标识符来访问.使用消息队列的好处是对每个消息指定了特定消息类型 ...
- os.getcwd()、sys.path[0]、sys.argv[0]和__file__的区别,终于弄清楚了
os.getcwd().sys.path[0].sys.argv[0]和__file__的区别 要分清这几个的区别与使用条件,实际测试一下是最准确的. 设计测试方法: 一个主模块用来运行,一个子模块用 ...
- Jmeter入门(01)Jmeter的下载和安装
一.什么是Jmeter 1.一款优秀的.开源的.免费的.功能测试和性能测试 工具 Jmeter ,使用Java开发的一款优秀的开源免费测试工具,主要用来做功能测试和性能测试(压力测试/负载测试),用J ...
- Spring Security 入门(1-3-3)Spring Security - logout 退出登录
要实现退出登录的功能我们需要在 http 元素下定义 logout 元素,这样 Spring Security 将自动为我们添加用于处理退出登录的过滤器 LogoutFilter 到 FilterCh ...
- python实现 多叉树 寻找最短路径
完全原创,能力有限,欢迎参考,未经允许,请勿转载 ! 完全原创,能力有限,欢迎参考,未经允许,请勿转载 ! 完全原创,能力有限,欢迎参考,未经允许,请勿转载 ! 完全原创,能力有限,欢迎参考,未经允许 ...