floyd算法是被大家熟知的最短路算法之一,利用动态规划的思想,f[i][j]记录i到j之间的最短距离,时间复杂度为O(n^3),虽然时间复杂度较高,但是由于可以处理其他相似的问题,有着广泛的应用,这些变形的问题也是考察重点之一。

  伪代码大致如下:

  a) 初始化:D[u,v]=A[u,v]
  b) For k:=1 to n
      For i:=1 to n
        For j:=1 to n
          If D[i,j]>D[i,k]+D[k,j] Then D[i,j]:=D[i,k]+D[k,j];
  c) 算法结束:D即为所有点对的最短路径矩阵
  可以看出,在最短路问题中,该算法维护的信息是两点之间的最短距离,然而在许多问题中,可以通过维护不同的信息来实现不同的功能,下面有一个例题:
  输入一个C个点S条边(C<=100,S<=1000)的无向 带权图,边权表示该路径上的噪音值,当噪声值太大时,耳膜可能会受到伤害,所以当你从某点去往另一个点时,总是希望路上经过的最大噪声值最小。输入一些询 问,每次询问两个点,输出这两点间最大噪声值最小的路径。
  解:这道题不难看出,我们要维护的是每条路径上的噪音最大值,然后再从中挑出最小的就可以啦,所以我们只需要把最短路时的状态转移方程改成f[i][j]=min(f[i][j],max(f[i][k],f[k][j]));当然初始化的时候没有直接相连的两点f[i][j]全部为正无穷,直接相连的点要初始化成连接两点的边的边权。
  以上就是很好的floyd的变形的例子。此外还有poj的2570,该题只要维护两点线路上一直存在的供应商就可以了。总的来说就是我们在图上需要两点间的什么信息就用floyd维护什么信息。

floyd算法小结的更多相关文章

  1. [图论]Floyd 算法小结

    Floyd 算法小结  By Wine93 2013.11 1. Floyd算法简介 Floyd算法利用动态规划思想可以求出任意2点间的最短路径,时间复杂度为O(n^3),对于稠密图, 效率要高于执行 ...

  2. 数据结构:点之间的最短距离--Floyd算法

    Floyd算法 Floyd算法 Dijkstra算法是用于解决单源最短路径问题的,Floyd算法则是解决点对之间最短路径问题的.Floyd算法的设计策略是动态规划,而Dijkstra採取的是贪心策略. ...

  3. 算法设计(动态规划实验报告) 基于动态规划的背包问题、Warshall算法和Floyd算法

    一.名称 动态规划法应用 二.目的 1.掌握动态规划法的基本思想: 2.学会运用动态规划法解决实际设计应用中碰到的问题. 三.要求 1.基于动态规划法思想解决背包问题(递归或自底向上的实现均可): 2 ...

  4. C#排序算法小结

    前言 算法这个东西其实在开发中很少用到,特别是web开发中,但是算法也很重要,因为任何的程序,任何的软件,都是由很多的算法和数据结构组成的.但是这不意味着算法对于每个软件设计人员的实际工作都是很重要的 ...

  5. 最短路径之Floyd算法

    Floyd算法又称弗洛伊德算法,也叫做Floyd's algorithm,Roy–Warshall algorithm,Roy–Floyd algorithm, WFI algorithm. Floy ...

  6. 最短路径—Dijkstra算法和Floyd算法

    原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...

  7. 最短路径问题——floyd算法

    floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法 ...

  8. Uvaoj 10048 - Audiophobia(Floyd算法变形)

    1 /* 题目大意: 从一个点到达另一个点有多条路径,求这多条路经中最大噪音值的最小值! . 思路:最多有100个点,然后又是多次查询,想都不用想,Floyd算法走起! */ #include< ...

  9. Floyd算法(三)之 Java详解

    前面分别通过C和C++实现了弗洛伊德算法,本文介绍弗洛伊德算法的Java实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明 ...

随机推荐

  1. WEB测试方法及注意地方

    1页面部分(1) 页面清单是否完整(是否已经将所需要的页面全部都列出来了)(2) 页面是否显示(在不同分辨率下页面是否存在,在不同浏览器版本中页面是是否显示)(3) 页面在窗口中的显示是否正确.美观( ...

  2. Qt界面对象的事件调用

    QMetaObject::invokeMethod(m_mainToolBarItem, "change2DesktopMode", Q_ARG(QVariant, m_curMo ...

  3. VMware中linux硬盘空间不足的解决方法

    相信很多人都和我一样是利用虚拟机安装linux的,在玩转linux的时候,可能就会遇到系统提示磁盘空间不足的情况.由于VMware中当初装系统时的设置的最大磁盘容量是不可以动态修改的,所以为我们使用带 ...

  4. array_filter,匿名函数

    static function get_categoryII() { return array( array('id' => 1, 'c1id' => 1, 'name' => '1 ...

  5. smarty 内存缓存

    <?php //缓存 //定义一个该页面的缓存文件路径 $filename="../cache/mainhc.html"; //设置一个缓存时间 $time=; //判断缓存 ...

  6. 关于js闭包的误区

    一直以为js的闭包只是内部函数保存了一份外部函数的变量值副本,但是以下代码打破了我的认识: function createFunctions() { var result = new Array(); ...

  7. 利用Redis解决Url过长的问题

    做网站,接手别人的代码,发现url有时候会过长导致页面直接翻掉. 后来想了一下可以利用redis将太长的地方暂存,加载页面时获取即可. 存Redis: /// <summary> /// ...

  8. SQL Server 2008 通用分页存储过程

    1.alert USE [数据库名称] GO /****** Object: StoredProcedure [dbo].[dbTab_PagerHelper] Script Date: 08/22/ ...

  9. nignx软件安装与调试

    1.通过yum或下载相应软件包安装nginx所需要的辅助软件:pcre.pcre-devel.openssl.openssl-devel.make.gcc.gcc+ 2.解压已经下载好的nginx软件 ...

  10. 经典的找不到符号(symbol)错误 #iOS开发

    使用BmobSDK的过程中,编译时出现了以下错误信息,意思是 -[BmobSRWebSocket _innerPumpScanner] 这个方法引用了 "_utf8_nextCharSafe ...