题目大意:

给出一个真分数,把它分解成最少的埃及分数的和。同时给出了k个数,不能作为分母出现,要求解的最小的分数的分母尽量大。

分析:

迭代加深搜索,求埃及分数的基础上,加上禁用限制就可以了。具体可以参考一下紫书。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<set>
using namespace std;
typedef long long LL;
LL ans[],v[];
set<LL> s;
int maxd;
LL gcd(LL a,LL b)
{
return b?gcd(b,a%b):a;
}
typedef long long LL;
LL get_first(LL a,LL b)
{
return b/a+;
}
bool better(int d)
{
for(int i=d;i>=;i--)
if(v[i]!=ans[i])
return ans[i]==-||v[i]<ans[i];
return false;
}
bool dfs(int d,LL from,LL aa,LL bb)
{
if(d==maxd)
{
if(bb%aa) return false;
v[d]=bb/aa;
if(s.count(bb/aa)) return false; if(better(d)) memcpy(ans,v,sizeof(LL)*(d+));
return true;
}
bool ok=false;
for(LL i=max(from,get_first(aa,bb));;i++)
{
if(bb*(maxd+-d)<=i*aa)
break;
if(s.count(i)) continue;
v[d]=i;
LL b2=bb*i;
LL a2=aa*i-bb;
LL g=gcd(a2,b2);
if(dfs(d+,i+,a2/g,b2/g))
ok=true;
}
return ok;
}
int main()
{
int t,k;
LL a,b,num;
scanf("%d",&t);
for(int ii=;ii<=t;ii++)
{
s.clear();
scanf("%lld%lld%d",&a,&b,&k);
for(int i=;i<k;i++)
{
scanf("%lld",&num);
s.insert(num);
}
int ok=;
for(maxd=;;maxd++)
{
memset(ans,-,sizeof(ans));
if(dfs(,get_first(a,b),a,b))
{
ok=;break;
} }
printf("Case %d: %lld/%lld=",ii,a,b);
for(int i=;i<=maxd;++i){
if(i) printf("+");
printf("1/%lld",ans[i]);
}
printf("\n");
}
return ;
}

UVa 12558 - Egyptian Fractions (HARD version)的更多相关文章

  1. UVA12558 Egyptian Fractions (HARD version) (埃及分数,迭代加深搜索)

    UVA12558 Egyptian Fractions (HARD version) 题解 迭代加深搜索,适用于无上界的搜索.每次在一个限定范围中搜索,如果无解再进一步扩大查找范围. 本题中没有分数个 ...

  2. uva12558 Egyptian Fractions (HARD version)(迭代深搜)

    Egyptian Fractions (HARD version) 题解:迭代深搜模板题,因为最小个数,以此为乐观估价函数来迭代深搜,就可以了. #include<cstdio> #inc ...

  3. 【Uva 12558】 Egyptian Fractions (HARD version) (迭代加深搜,IDA*)

    IDA* 就是iterative deepening(迭代深搜)+A*(启发式搜索) 启发式搜索就是设计估价函数进行的搜索(可以减很多枝哦~) 这题... 理论上可以回溯,但是解答树非常恐怖,深度没有 ...

  4. UVA-12558 Egyptian Fractions (HARD version) (IDA* 或 迭代加深搜索)

    题目大意:经典的埃及分数问题. 代码如下: # include<iostream> # include<cstdio> # include<cstring> # i ...

  5. UVA12558 Egyptian Fractions (HARD version)(埃及分数)

    传送门 题目大意 给出一个真分数 a/b,要求出几个互不相同的埃及分数(从大到小),使得它们之和为 a/b (埃及分数意思是分子为1的分数,详见百度百科) 如果有多组解,则分数数量少的优先 如果分数数 ...

  6. 【习题 7-7 UVA-12558】Egyptian Fractions (HARD version)

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 迭代加深搜索. 枚举最大量maxdep 在dfs里面传剩余的要凑的分子.分母 以及上一次枚举的值是多少. 然后找到最小的k,满足1/ ...

  7. UVA12558-Efyptian Fractions(HARD version)(迭代加深搜索)

    Problem UVA12558-Efyptian Fractions(HARD version) Accept:187  Submit:3183 Time Limit: 3000 mSec  Pro ...

  8. UVa 10814 - Simplifying Fractions

    题目大意:给一个分数,对其进行化简.因为分子.分母最大为1030,所以用要用大数. import java.io.*; import java.util.*; import java.math.*; ...

  9. 【例题 7-3 UVA - 10976】Fractions Again?!

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] x>=y => \(\frac{1}{x}<=\frac{1}{y}\) => \(\frac{1}{x}= ...

随机推荐

  1. Android Fragment完全解析,关于碎片你所需知道的一切 (转)。

    我们都知道,Android上的界面展示都是通过Activity实现的,Activity实在是太常用了,我相信大家都已经非常熟悉了,这里就不再赘述. 但是Activity也有它的局限性,同样的界面在手机 ...

  2. [转]AndroidTolls国内镜像

    AndroidDevTools简介 Android Dev Tools官网地址:www.androiddevtools.cn 收集整理Android开发所需的Android SDK.开发中用到的工具. ...

  3. 转: Div与table的区别

    1:速度和加载方式方面的区别 div 和 table 的差异不是速度,而是加载方式,速度只能是指网络速度,如果速度足够快,是没有差异的: div 的加载方式是即读即加载,遇到 <div> ...

  4. bzoj 2245: [SDOI2011]工作安排

    #include<cstdio> #include<iostream> #include<cstring> #define M 10000 #define inf ...

  5. 【STL】-deque的用法

    初始化: #include <deque> deque<float> fdeque; 算法: fdeque.push_front(f); fdeque.push_back(f) ...

  6. HDFS的可靠性

    HDFS的可靠性 1.冗余副本策略   2.机架策略    3.心跳机制    4.安全模式 5.校验和           6.回收站       7.元数据保护    8.快照机制 1.冗余副本策 ...

  7. JVM-class文件完全解析-方法表集合

    方法表集合 前面的魔数,次版本号,主板本号,常量池入口,常量池,访问标志,类索引,父类索引,接口索引集合,字段表集合,那么再接下来就是方法表了.   方法表的构造如同字段表一样,依次包括了访问标志(a ...

  8. Android MotionEvent getX() getY() getRawX() getRawY() and View getTop() getLeft()

    getRowX:触摸点相对于屏幕的坐标getX: 触摸点相对于按钮的坐标getTop: 按钮左上角相对于父view(LinerLayout)的y坐标getLeft: 按钮左上角相对于父view(Lin ...

  9. 爬虫再探之mysql简单使用

    在爬取数据量比较大时,用EXCEL存取就不太方便了,这里简单介绍一下python操作mysql数据库的一些操作.本人也是借助别人的博客学习的这些,但是找不到原来博客链接了,就把自己的笔记写在这里,这里 ...

  10. PHP中常用正则表达式大全

    常用正则表达式大全!(例如:匹配中文.匹配html) 匹配中文字符的正则表达式: [u4e00-u9fa5]    评注:匹配中文还真是个头疼的事,有了这个表达式就好办了 匹配双字节字符(包括汉字在内 ...