SPOJ 422 Transposing is Even More Fun(polay计数)
题目链接:http://www.spoj.com/problems/TRANSP2/
题意:
思路:不妨设a=1,b=2,
我们发现(001,010,100)组成一个置换,(011,110,101)组成一个置换。那么对于同一个置换中元素,设置换大小为x,则需要x-1次交换。因此,我们若找到循环节的个数K,那么答案即为2^(a+b)-K.
a+b个珠子的项链,每个珠子可以用两种颜色涂色,通过每次左移a个珠子得到的相同的视为相同。求不同项链的个数。问题就转化成这个。设g=Gcd(a,a+b),则置换群个数为G=(a+b)/g。其实可以看做有G个珠子,每个珠子可以用2^g种颜色涂色。答案为:
int a,b,Pow[N],phi[N];
int prime[1005],tag[1005],cnt; void init()
{
Pow[0]=1;
int i,j;
for(i=1;i<N;i++) Pow[i]=Pow[i-1]*2%mod; phi[1]=1;
for(i=2;i<N;i++) if(!phi[i]) for(j=i;j<N;j+=i)
{
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-1);
} for(i=1;i<N;i++) phi[i]%=mod; for(i=2;i<=1000;i++) if(!tag[i])
{
prime[cnt++]=i;
for(j=i+i;j<=1000;j+=i) tag[j]=1;
}
} int Gcd(int x,int y)
{
if(y==0) return x;
return Gcd(y,x%y);
} i64 exGcd(int a,int b,i64 &x,i64 &y)
{
if(b==0)
{
x=1;
y=0;
return a;
}
i64 temp=exGcd(b,a%b,x,y);
i64 t=x;
x=y;
y=t-a/b*y;
return temp;
} int p[105],q[105],num; void split(int n)
{
num=0;
int i;
for(i=0;i<cnt&&prime[i]*prime[i]<=n;i++) if(n%prime[i]==0)
{
p[num]=prime[i];
q[num]=0;
while(n%prime[i]==0)
{
q[num]++;
n/=prime[i];
}
num++;
}
if(n>1) p[num]=n,q[num++]=1;
} int ans,m,L; int calPow(int a,int b)
{
int ans=1;
while(b)
{
if(b&1) ans=(i64)ans*a%mod;
a=(i64)a*a%mod;
b>>=1;
}
return ans;
} void cal(int t)
{
int x=L/t;
ans+=(i64)calPow(m,t)*phi[x]%mod;
ans%=mod;
} void DFS(int dep,int t)
{
if(dep==num)
{
cal(t);
return;
}
int i;
for(i=0;i<=q[dep];i++)
{
DFS(dep+1,t);
t*=p[dep];
}
} int main()
{
init();
rush()
{
RD(a,b);
if(!a||!b)
{
puts("0");
continue;
}
b+=a;
int k=Gcd(a,b);
L=b/k;
split(L); ans=0; m=Pow[k];
DFS(0,1);
i64 x,y;
exGcd(L,mod,x,y);
x=(x%mod+mod)%mod;
ans=ans*x%mod;
ans=Pow[b]-ans;
ans=(ans%mod+mod)%mod;
PR(ans);
}
}
SPOJ 422 Transposing is Even More Fun(polay计数)的更多相关文章
- SPOJ 422 Transposing is Even More Fun ——Burnside引理
这题目就比较有趣了. 大概题目中介绍了一下计算机的储存方法,给一个$2^a*2^b$的矩阵. 求转置.但是只能交换两个数,求所需要的步数. 首先可以把变化前后的位置写出来,构成了许多的循环.左转将狼踩 ...
- 解题:SPOJ 422 Transposing is Even More Fun
题面 这种换来换去的东西很容易想到置换群那一套,然后题目甚至还暗示了二进制=.= 直接换的话显然是$2^{a+b}$次,但是一个循环节里可以少换一次,然后问题就变成了数循环节 在一个循环节里的位置有什 ...
- Burnside引理和polay计数学习小记
在组合数学中有这样一类问题,比如用红蓝两种颜色对2*2的格子染色,旋转后相同的算作一种.有多少种不同的染色方案?我们列举出,那么一共有16种.但是我们发现,3,4,5,6是同一种,7,8,9,10是用 ...
- 【SPOJ】Transposing is even more fun!
题意: 给出a.b 表示按先行后列的方式储存矩阵 现在要将其转置 可以交换两个点的位置 求最小操作次数 题解: 储存可以将其视为拉成一条链 设a=5.b=2 则在链上坐标用2^***(a,b)表示为( ...
- POJ 2409 Let it Bead(polay计数)
题目链接:http://poj.org/problem?id=2409 题意:给出一个长度为m的项链,每个珠子可以用n种颜色涂色.翻转和旋转后相同的算作一种.有多少种不同的项链? 思路: (1) 对于 ...
- HDU 4633 Who's Aunt Zhang(polay计数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4633 题意:有下面一个魔方.有K种颜色.可以为顶点.边.面(每个面有9个小面)染色.两种染色算作一种当 ...
- SPOJ.104.Highways([模板]Matrix Tree定理 生成树计数)
题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只 ...
- Burnside引理和polay计数 poj2409 Let it Bead
题目描述 "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you ...
- polay计数原理
公式: Burnside引理: 1/|G|*(C(π1)+C(π2)+C(π3)+.....+C(πn)): C(π):指不同置换下的等价类数.例如π=(123)(3)(45)(6)(7),X={1, ...
随机推荐
- NSStream
NSStream 流是位数据通过通信路径的连续传送序列.它是单向的,从一个应用程序的角度,流可以是输入流(读操作流)或者输出流(写操作流),除了基于文件的流之外,其余的都是non-seekable的. ...
- Codeforces Round #364 (Div. 2)->A. Cards
A. Cards time limit per test 1 second memory limit per test 256 megabytes input standard input outpu ...
- 负MARGIN之讲解
css中的负边距(negative margin)是布局中的一个常用技巧,只要运用得合理常常会有意想不到的效果.很多特殊的css布局方法都依赖于负边距,所以掌握它的用法对于前端的同学来说,那是必须的. ...
- 已有a,b两个链表,每个链表中的结点包括学号、成绩。要求把两个链表合并,按学号升序排列
1.我的思路先将b链表连接在a链表的后面,这个很容易实现,将a链表最后的结点中的p.next改为指向b链表的头结点即可. 再将这个新链表用选择排序即可. 代码如下: #include<stdio ...
- 如何将控制台程序包装成windows服务
1. 新建一个项目,或者从选择当前解决方案--右键-添加--新建项目 2. 选择(项目类型)Visual C#项目,(模板)Windows 服务,填写要创建的服务名称(修改默认的WindowServi ...
- Kafka的coordinator
(基于0.10版本) Group Management Protocol Kafka的coordiantor要做的事情就是group management,就是要对一个团队(或者叫组)的成员进行管理. ...
- MEAN实践——LAMP的新时代替代方案(上)
摘要:90 年代,LAMP 曾风靡一时,然而随着需求的变迁和数据流量的激增,LAMP 已不可避免的走下神坛.近日,在 MongoDB Blog 中,Dana Groce 介绍了一个基于新时代架构的实践 ...
- IT主要在线学习网站
大的模式来说,目前做编程学习网站的大概有两种.一种是视频模式,如优才,麦可,开课吧等,一种是非视频模式如计蒜客(泡面吧),实验楼和他们汇智网等.其中多数产品的创新也都是在“视频+交互式学习”模式上.要 ...
- POJ 1468
#include <iostream> #define MAXN 5005 using namespace std; struct node { int b_x; int b_y; int ...
- Full GC有关问题学习分析(转载)
网站持久代引发Full GC问题分析 现状: Dragoon(监控系统)的日报显示trade_us_wholelsale(美国wholesale集群),日均Young GC次数25w次左右,应用暂停2 ...