Link:

BZOJ 3144 传送门

Solution:

发现要把点集分成不连通的两部分,最小割的模型还是很明显的

首先我们将原图转化为$R+1$层,从而将点权化为边权

关键还是在于建图是怎么保证$|h_i-h_j|<=D$这个条件

要保证$|h_i-h_j|<=D$这个条件也就意味着选了$i$就不能选$j$,但仍然要保证$i->j$的连通性

于是我们由$i+D$向$i$连一条边权为$INF$的边,

这样如果割掉$i,j(j>i+D)$但不选择它们之间的边,就不会影响ST的连通性

只能再割掉$INF$边或其他边,这样两边同时选择明显不会计入答案

同时$i,j(j<=i+D)$就不会出现这样的问题,于是通过设置$INF$边就解决了这个问题

如上图,如果仅割掉右侧绿边和左侧红边,中间黑色的$INF$边仍会保持ST的连通性

Code:

#include <bits/stdc++.h>

using namespace std;

const int MAXN=**;
const int INF=;
int P,Q,R,D,S,T,id[][][],iter[MAXN],level[MAXN],cnt=,x;
int dx[]={,,,-},dy[]={,-,,};
struct edge
{
int to,cap,rev;
};
vector<edge> G[MAXN]; void add_edge(int from,int to,int cap)
{
G[from].push_back(edge{to,cap,G[to].size()});
G[to].push_back(edge{from,,G[from].size()-});
} bool bfs()
{
memset(level,-,sizeof(level));
queue<int> que;que.push(S);level[S]=;
while(!que.empty())
{
int v=que.front();que.pop();
for(int i=;i<G[v].size();i++)
{
edge &e=G[v][i];
if(e.cap && level[e.to]==-)
level[e.to]=level[v]+,que.push(e.to);
}
}
return (level[T]>);
} int dfs(int v,int f)
{
if(v==T) return f;
for(int &i=iter[v];i<G[v].size();i++)
{
edge &e=G[v][i];
if(level[e.to]==level[v]+ && e.cap)
{
int d=dfs(e.to,min(f,e.cap));
if(d)
{
e.cap-=d;G[e.to][e.rev].cap+=d;
return d;
}
}
}
return ;
} int Dinic()
{
int ret=;
while(bfs())
{
memset(iter,,sizeof(iter));
int f;
while((f=dfs(S,INF))>) ret+=f;
}
return ret;
} int main()
{
scanf("%d%d%d%d",&P,&Q,&R,&D);
S=;
for(int i=;i<=R+;i++) for(int j=;j<=P;j++) for(int k=;k<=Q;k++) //预处理出编号
id[i][j][k]=++cnt;
T=++cnt; for(int i=;i<=R;i++) for(int j=;j<=P;j++) for(int k=;k<=Q;k++)
scanf("%d",&x),add_edge(id[i][j][k],id[i+][j][k],x); for(int i=;i<=P;i++) for(int j=;j<=Q;j++)
add_edge(S,id[][i][j],INF),add_edge(id[R+][i][j],T,INF); for(int i=D+;i<=R+;i++) for(int j=;j<=P;j++) for(int k=;k<=Q;k++)
for(int dir=;dir<;dir++)
{
int fx=j+dx[dir],fy=k+dy[dir];
if(!id[i-D][fx][fy]) continue;
add_edge(id[i][j][k],id[i-D][fx][fy],INF);
} printf("%d",Dinic());
return ;
}

Review:

1、认真审题,不要主观带入

这题一开始想成了切割线必须在同一个平面,还是不能读题时自己想当然啊

2、最小割模型的新套路

最小割的重点便在于割边计入答案

如果不想让两条边同时计入答案,可以在它们之间加入一条$INF$边,

保证同时选择两边时不会影响原图ST的连通性且$INF$边不会影响结果

使得同时选择两边时一定不符合最小的条件,从而不会计入答案

3、点权变边权

可以通过点变边,边变点的方式完成这样的转换

[BZOJ 3144] 切糕的更多相关文章

  1. BZOJ 3144 切糕(最小割)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3144 题意: 思路:我们假设没有那个D的限制.这样就简 单了.贪心的话,我们只要在每一个 ...

  2. bzoj 3144 切糕 —— 最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 每个点拆成 R 个,连成一条链,边上是权值,割掉代表选这一层: 然后每个点的第 t 层 ...

  3. BZOJ 3144 切糕 最小割

    题意: 一个矩阵,每个格子分配一个数,不同的数字,代价不同,要求相邻格子数字差小等于d 求最小代价. 分析: 我猜肯定有人看题目就想到最小割了,然后一看题面理科否决了自己的这个想法…… 没错,就是最小 ...

  4. [BZOJ 3144][HNOI 2013] 切糕

    题目大意 切糕是 (p times q times r) 的长方体,每个点有一个违和感 (v_{x, y, z}).先要水平切开切糕(即对于每个纵轴,切面与其有且只有一个交点),要求水平上相邻两点的切 ...

  5. [BZOJ 3144] [Hnoi2013] 切糕 【最小割】

    题目链接:BZOJ - 3144 题目分析 题意:在 P * Q 的方格上填数字,可以填 [1, R] . 在 (x, y) 上填 z 会有 V[x][y][z] 的代价.限制:相邻两个格子填的数字的 ...

  6. BZOJ 3144: [Hnoi2013]切糕

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1495  Solved: 819[Submit][Status] ...

  7. bzoj 3144: [Hnoi2013]切糕 最小割

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 681  Solved: 375[Submit][Status] ...

  8. 【BZOJ 3144】 3144: [Hnoi2013]切糕 (最小割模型)

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1764  Solved: 965 Description Inp ...

  9. BZOJ 3144 [HNOI2013]切糕 (最大流+巧妙的建图)

    题面:洛谷传送门 BZOJ传送门 最大流神题 把点权转化为边权,切糕里每个点$(i,j,k)$向$(i,j,k+1)$连一条流量为$v(i,j,k)$的边 源点$S$向第$1$层的点连边,第$R+1$ ...

随机推荐

  1. 【BZOJ 1124】[POI2008] 枪战Maf Tarjan+树dp

    #define int long long using namespace std; signed main(){ 这个题一看就是图论题,然后我们观察他的性质,因为一个图论题如果没有什么性质,就是真· ...

  2. org.json与json-lib的区别(补充 FastJson)

    org.json 是JSON国际组织官方推出的标准json解析方案,已经被 android sdk 纳入到标准内置类库,依赖项少,但直至API17版本SDK中,仅支持JSONObject与JSONAr ...

  3. init_connect基本用法

    服务器为每个连接的客户端执行的字符串.字符串由一个或多个SQL语句组成.要想指定多个语句,用分号间隔开.例如,每个客户端开始时默认启用autocommit模式.没有全局服务器变量可以规定autocom ...

  4. visio2013安装提示找不到Office.zh_cn\officeMUI.mis officemui.xml(转)

    windoes10 已经安装office2013后,想安装Visio2013,报错如题所示.解决方法我采用的是方法二:解压缩office2013的ISO包,解压缩Visio2013的ISO包,安装Vi ...

  5. 移动端去掉a标签点击时出现的背景

    之前做移动端的Portal时,手机上测试,点击a标签总是出现一个背景框 在CSS中添加 -webkit-tap-highlight-color: rgba(0, 0, 0, 0);就可以了 a:act ...

  6. 【BZOJ】1725: [Usaco2006 Nov]Corn Fields牧场的安排

    [算法]状压DP [题解]对于上一行的每个状态,每行进行DFS. #include<cstdio> #include<algorithm> #include<cstrin ...

  7. html5 游戏开发

    近来想做html5游戏开发些小东西玩一下,因为手边就是笔记本,想怎么玩就怎么玩了,今年可以说是非常重要特殊的一年,感觉有些倒霉,不过,心态最重要,该怎么做的时候就去怎么做吧,日子的24小时是不会变的, ...

  8. Ansible在节点间传输文件

    1. 在控制节点(the control machine )与远程节点( the current remote host)之间传输文件 1.1 如果需要传输文件,可以使用copy模块,注意copy模块 ...

  9. iOS float小数四舍五入

    http://blog.csdn.net/fanjunxi1990/article/details/21536189 直接贴代码了 #import "ViewController.h&quo ...

  10. Tomcat下载安装及常见问题解决办法

    一.Tomcat的下载: 下载地址:http://tomcat.apache.org/ 下载Tomcat6.0(在左侧的Download下,考虑到稳定性现在企业大部分还在用Tomcat6.0) (1) ...