题目链接:http://219.244.176.199/JudgeOnline/problem.php?id=1214

这是这次微软实习面试的一道题,题目大意就是:有一个n*m的矩阵,已知它每一行都是不严格递增的,而且每一行的任意数都比前一行的任意数大或等于。给你一个数k,请你判断k是否存在于矩阵中。

当时想到的方法是二分第一列,就能确定k位于哪一行,然后二分这一行,得到是否存在k。二分第一列的复杂度是O(logn),二分那一行的复杂度是O(logm),所以总的复杂度是O(logn+logm)。

不过上面的写法需要写两个二分。其实二维数组在内存中是连续的一段内存,所以我们可以直接把二维数组看成一个一维数组b,那么b[p]对应的就是a[p/m][p%m]。这样的话就可以直接进行一维数组的二分了。复杂度是O(logmn)。

其实两个的时间复杂度是一致的,只是写法第二种稍微简单一点。

代码:二分+二分

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <vector>
#include <string>
#define LL long long using namespace std; int a[][];
int n, m, q; void input()
{
for (int i = ; i < n; ++i)
for (int j = ; j < m; ++j)
scanf("%d", &a[i][j]);
} bool binSearch(int k)
{
int lt = , rt = n-, mid, row;
while (lt+ < rt)
{
mid = (lt+rt)>>;
if (a[mid][] <= k) lt = mid;
else rt = mid;
}
if (a[rt][] <= k) row = rt;
else row = lt; lt = ; rt = m-;
while (lt+ < rt)
{
mid = (lt+rt)>>;
if (a[row][mid] <= k) lt = mid;
else rt = mid;
}
if (a[row][lt] == k) return true;
if (a[row][rt] == k) return true;
return false;
} void work()
{
int k;
scanf("%d", &q);
for (int i = ; i < q; ++i)
{
scanf("%d", &k);
if (binSearch(k)) printf("Yes\n");
else printf("No\n");
}
} int main()
{
//freopen("test2.in", "r", stdin);
//freopen("test3.out", "w", stdout);
while (scanf("%d%d", &n, &m) != EOF)
{
input();
work();
} return ;
}

代码:看成一维二分

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <vector>
#include <string>
#define LL long long using namespace std; int a[][];
int n, m, q; void input()
{
for (int i = ; i < n; ++i)
for (int j = ; j < m; ++j)
scanf("%d", &a[i][j]);
} bool binSearch(int k)
{
int lt = , rt = n*m-, mid;
while (lt+ < rt)
{
mid = (lt+rt)>>;
if (a[mid/m][mid%m] <= k) lt = mid;
else rt = mid;
}
if (a[lt/m][lt%m] == k) return true;
if (a[rt/m][rt%m] == k) return true;
return false;
} void work()
{
int k;
scanf("%d", &q);
for (int i = ; i < q; ++i)
{
scanf("%d", &k);
if (binSearch(k)) printf("Yes\n");
else printf("No\n");
}
} int main()
{
//freopen("test2.in", "r", stdin);
//freopen("test3.out", "w", stdout);
while (scanf("%d%d", &n, &m) != EOF)
{
input();
work();
} return ;
}

ACM学习历程—SNNUOJ1214 矩阵1(二分)的更多相关文章

  1. ACM学习历程—SNNUOJ1215 矩阵2(二分 && dfs)

    http://219.244.176.199/JudgeOnline/problem.php?id=1215 这是这次微软和百度实习面试的一道题,题目大意就是:有一个n*m的矩阵,已知它每一行都是不严 ...

  2. ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...

  3. ACM学习历程—HDU5592 ZYB's Premutation(逆序数 && 树状数组 && 二分)(BestCoder Round #65 1003)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5592 题目大意就是给了每个[1, i]区间逆序对的个数,要求复原原序列. 比赛的时候2B了一发. 首先 ...

  4. ACM学习历程—HDU5587 Array(数学 && 二分 && 记忆化 || 数位DP)(BestCoder Round #64 (div.2) 1003)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5587 题目大意就是初始有一个1,然后每次操作都是先在序列后面添加一个0,然后把原序列添加到0后面,然后 ...

  5. ACM学习历程—UESTC 1222 Sudoku(矩阵)(2015CCPC H)

    题目链接:http://acm.uestc.edu.cn/#/problem/show/1226 题目大意就是构造一个行列和每个角的2*2都是1234的4*4矩阵. 用dfs暴力搜索,不过需要每一步进 ...

  6. ACM学习历程—UESTC 1215 Secrete Master Plan(矩阵旋转)(2015CCPC A)

    题目链接:http://acm.uestc.edu.cn/#/problem/show/1215 题目大意就是问一个2*2的矩阵能否通过旋转得到另一个. 代码: #include <iostre ...

  7. ACM学习历程—51NOD 1685 第K大区间2(二分 && 树状数组 && 中位数)

    http://www.51nod.com/contest/problem.html#!problemId=1685 这是这次BSG白山极客挑战赛的E题. 这题可以二分答案t. 关键在于,对于一个t,如 ...

  8. ACM学习历程—Hihocoder 1139 二分·二分答案(bfs)

    http://hihocoder.com/problemset/problem/1139 这题提示上写的是二分,但是感觉不二分应该也可以,至少题目是AC的... 二分的思想就是二分答案的值,看能不能在 ...

  9. ACM学习历程—Hihocoder 1288 Font Size(暴力 || 二分)

    http://hihocoder.com/problemset/problem/1288 这题是这次微软笔试的第一题,关键的是s的上限是min(w, h),这样s的范围只有到1000,这样就可以直接暴 ...

随机推荐

  1. rails 下载 send_file

    def download send_file File.join(Rails.root, "public", @doc.link), :filename => @title+ ...

  2. 生于MVP,死于PMF

    本文的主要内容会按照是什么.为什么以及如何做的逻辑展开,主要包括以下几部分: 什么是MVP与PMF: 为什么要有MVP与PMF: 如何创建MVP: 如何验证PMF. 什么是MVP与PMF MVP(Mi ...

  3. SOA宣言和微服务特点

    如果从概念层来看,我更喜欢把SOA归为企业架构的范畴,从企业架构出发把业务分解为不同业务域的服务,关注系统间的服务互联互通的规范,并不关心如何实现.也就是说在企业架构上使用SOA支撑业务,而在方案架构 ...

  4. Laravel 学习笔记之 Composer 自动加载

    说明:本文主要以Laravel的容器类Container为例做简单说明Composer的自动加载机制. Composer的自动加载机制 1.初始化一个composer项目 在一个空目录下compose ...

  5. Linux网络检测手段汇总

    1.iftop iftop可测量通过每一个套接字连接传输的数据:它采用的工作方式有别于nload.iftop使用pcap库来捕获进出网络适配器的数据包,然后汇总数据包大小和数量,搞清楚总的带宽使用情况 ...

  6. 根据Django后台的ajax大全

    一.什么是ajax 1.1 什么是JSON? AJAX(Asynchronous Javascript And XML)翻译成中文就是“异步Javascript和XML”.即使用Javascript语 ...

  7. dfs的返回条件

    用到dfs时要注意设置函数的返回条件,否则会导致一直wa!!!!!

  8. Android LCD(一):LCD基本原理【转】

    本文转载自:http://blog.csdn.net/longxiaowu/article/details/24787597 关键词:Android LCD TFT 液晶 偏光片 彩色滤光片  背光 ...

  9. gzip: stdin: unexpected end of file tar: Unexpected EOF in archive

    1.问题描述: 今天解压tar包遇到这样一个问题 使用命令:tar -zxvf  xxxxx.tar.gz gzip: stdin: unexpected end of filetar: Unexpe ...

  10. 字符串匹配算法BF和KMP总结

    背景 来看一道leetcode题目: Implement strStr(). Returns the index of the first occurrence of needle in haysta ...