keras 保存训练的最佳模型
转自:https://anifacc.github.io/deeplearning/machinelearning/python/2017/08/30/dlwp-ch14-keep-best-model-checkpoint/,感谢分享
深度学习模型花费时间大多很长, 如果一次训练过程意外中断, 那么后续时间再跑就浪费很多时间. 这一次练习中, 我们利用 Keras checkpoint 深度学习模型在训练过程模型, 我的理解是检查训练过程, 将好的模型保存下来. 如果训练过程意外中断, 那么我们可以加载最近一次的文件, 继续进行训练, 这样以前运行过的就可以忽略.
那么如何 checkpoint 呢, 通过练习来了解.
- 数据: Pima diabete 数据
- 神经网络拓扑结构: 8-12-8-1
1.效果提升检查
如果神经网络在训练过程中, 其训练效果有所提升, 则将该次模型训练参数保存下来.
代码:
# -*- coding: utf-8 -*-
# Checkpoint NN model imporvements
from keras.models import Sequential
from keras.layers import Dense
from keras.callbacks import ModelCheckpoint
import numpy as np
import urllib
url = "http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data"
raw_data = urllib.urlopen(url)
dataset = np.loadtxt(raw_data, delimiter=",")
X = dataset[:, 0:8]
y = dataset[:, 8]
seed = 42
np.random.seed(seed)
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, init='uniform', activation='relu'))
model.add(Dense(8, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid'))
# compile
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# checkpoint
filepath = "weights-improvement-{epoch:02d}-{val_acc:.2f}.hdf5"
# 中途训练效果提升, 则将文件保存, 每提升一次, 保存一次
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True,
mode='max')
callbacks_list = [checkpoint]
# Fit
model.fit(X, y, validation_split=0.33, nb_epoch=150, batch_size=10,
callbacks=callbacks_list, verbose=0)
部分结果:
Epoch 00139: val_acc did not improve
Epoch 00140: val_acc improved from 0.70472 to 0.71654, saving model to weights-improvement-140-0.72.hdf5
Epoch 00141: val_acc did not improve
Epoch 00142: val_acc did not improve
Epoch 00143: val_acc did not improve
Epoch 00144: val_acc did not improve
Epoch 00145: val_acc did not improve
Epoch 00146: val_acc did not improve
Epoch 00147: val_acc did not improve
Epoch 00148: val_acc did not improve
Epoch 00149: val_acc did not improve
在运行程序的本地文件夹下, 我们会发现许多性能提升时, 程序自动保存的 hdf5 文件.
2.检查最好模型
检查训练过程中训练效果最好的那个模型.
代码:
# -*- coding: utf-8 -*-
# # checkpoint the weights for the best model on validation accuracy
from keras.models import Sequential
from keras.layers import Dense
from keras.callbacks import ModelCheckpoint
import numpy as np
import urllib
url = "http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data"
raw_data = urllib.urlopen(url)
dataset = np.loadtxt(raw_data, delimiter=",")
X = dataset[:, 0:8]
y = dataset[:, 8]
seed = 42
np.random.seed(seed)
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, init='uniform', activation='relu'))
model.add(Dense(8, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid'))
# compile
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# checkpoint
filepath='weights.best.hdf5'
# 有一次提升, 则覆盖一次.
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True,
mode='max')
callbacks_list = [checkpoint]
# fit
model.fit(X, y, validation_split=0.33, nb_epoch=150, batch_size=10,
callbacks=callbacks_list, verbose=0)
部分结果:
df5
Epoch 00044: val_acc did not improve
Epoch 00045: val_acc improved from 0.69685 to 0.69685, saving model to weights.best.hdf5
Epoch 00046: val_acc did not improve
Epoch 00047: val_acc did not improve
Epoch 00048: val_acc did not improve
Epoch 00049: val_acc improved from 0.69685 to 0.70472, saving model to weights.best.hdf5
...
Epoch 00140: val_acc improved from 0.70472 to 0.71654, saving model to weights.best.hdf5
Epoch 00141: val_acc did not improve
Epoch 00142: val_acc did not improve
Epoch 00143: val_acc did not improve
Epoch 00144: val_acc did not improve
Epoch 00145: val_acc did not improve
Epoch 00146: val_acc did not improve
Epoch 00147: val_acc did not improve
Epoch 00148: val_acc did not improve
Epoch 00149: val_acc did not improve
文件 weights.best.hdf5 将第140迭代时的模型权重保存.
3.加载保存模型
上面我们将训练过程中最好的模型保存下来, 如果训练有中断, 那么我们可以直接采用本次模型.
代码:
# -*- coding: utf-8 -*-
# Load and use weights from a checkpoint
from keras.models import Sequential
from keras.layers import Dense
from keras.callbacks import ModelCheckpoint
import numpy as np
import urllib
url = "http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data"
raw_data = urllib.urlopen(url)
dataset = np.loadtxt(raw_data, delimiter=",")
X = dataset[:, 0:8]
y = dataset[:, 8]
seed = 42
np.random.seed(seed)
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, init='uniform', activation='relu'))
model.add(Dense(8, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid'))
# load weights 加载模型权重
model.load_weights('weights.best.hdf5')
# compile 编译
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print('Created model and loaded weights from hdf5 file')
# estimate
scores = model.evaluate(X, y, verbose=0)
print("{0}: {1:.2f}%".format(model.metrics_names[1], scores[1]*100))
结果:
Created model and loaded weights from hdf5 file
acc: 74.74%
4.Sum
本次练习如何将神经网络模型训练过程中, 训练效果最好的模型参数保存下来, 为以后的时候准备, 以备意外发生, 节省时间, 提高效率.
keras 保存训练的最佳模型的更多相关文章
- 人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型
人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型 经过前面稍显罗嗦的准备工作,现在,我们终于可以尝试训练我们自己的卷积神经网络模型了.CNN擅长图像处理,keras库的te ...
- 转载:tensorflow保存训练后的模型
训练完一个模型后,为了以后重复使用,通常我们需要对模型的结果进行保存.如果用Tensorflow去实现神经网络,所要保存的就是神经网络中的各项权重值.建议可以使用Saver类保存和加载模型的结果. 1 ...
- TensorFlow Saver 保存最佳模型 tf.train.Saver Save Best Model
TensorFlow Saver 保存最佳模型 tf.train.Saver Save Best Model Checkmate is designed to be a simple drop-i ...
- keras系列︱Sequential与Model模型、keras基本结构功能(一)
引自:http://blog.csdn.net/sinat_26917383/article/details/72857454 中文文档:http://keras-cn.readthedocs.io/ ...
- 第三十二节,使用谷歌Object Detection API进行目标检测、训练新的模型(使用VOC 2012数据集)
前面已经介绍了几种经典的目标检测算法,光学习理论不实践的效果并不大,这里我们使用谷歌的开源框架来实现目标检测.至于为什么不去自己实现呢?主要是因为自己实现比较麻烦,而且调参比较麻烦,我们直接利用别人的 ...
- Keras/Tensorflow训练逻辑研究
Keras是什么,以及相关的基础知识,这里就不做详细介绍,请参考Keras学习站点http://keras-cn.readthedocs.io/en/latest/ Tensorflow作为backe ...
- (数据科学学习手札44)在Keras中训练多层感知机
一.简介 Keras是有着自主的一套前端控制语法,后端基于tensorflow和theano的深度学习框架,因为其搭建神经网络简单快捷明了的语法风格,可以帮助使用者更快捷的搭建自己的神经网络,堪称深度 ...
- 基于深度学习和迁移学习的识花实践——利用 VGG16 的深度网络结构中的五轮卷积网络层和池化层,对每张图片得到一个 4096 维的特征向量,然后我们直接用这个特征向量替代原来的图片,再加若干层全连接的神经网络,对花朵数据集进行训练(属于模型迁移)
基于深度学习和迁移学习的识花实践(转) 深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 Tens ...
- 使用 keras 和 tfjs 构建血细胞分类模型
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识!
随机推荐
- HDU_1430 魔板 【BFS+康托展开+置换】
一.题面 POJ1430 二.分析 该题与之前做的八数码不同,它是一个2*4的棋盘,并且没有空的区域.这样考虑的情况是很少的,依然结合康托展开,这时康托展开最多也只乘7的阶乘,完全可以BFS先预处理一 ...
- 关于strcmp函数的用法
strcmp函数是在string.h库下的han函数, 具体用法如下: strcmp函数是用来比较2个字符串的函数,如srcmp(字如果符串1,字符串2),从第一个字符开始比较,如果到最后两个字符串完 ...
- Codeforces - 914F bitset 维护字符串匹配个数
题意:给你一个串,支持两种操作,1修改某个点的字符,2询问[l,r]内模式串P与原串的匹配个数 bitset的写法是真的6啊,简直是优雅暴力的典范 bs[i]表示\(T_i\)与\(P\)匹配与否, ...
- an concreate example
Step 1: Creating Parts 1. Split the geometry 2. Create the INLET part. 3. Create the OUTLET part. 4. ...
- [转] 最简单实现跨域的方法:使用nginx反向代理
[From] http://blog.jobbole.com/90975/ 什么是跨域 跨域,指的是浏览器不能执行其他网站的脚本.它是由浏览器的同源策略造成的,是浏览器对javascript施加的安全 ...
- day_01 python基础 基本数据类型 if条件
1. python简介 解释型,弱类型,高级开发语言2. 第一个python程序编写 1. 标点符号(英文) 2. 编码格式(utf-8)3.变量 把程序运行产生的中间值储存起来,方便后面 ...
- 【研究】Struts2-048漏洞
1.1 漏洞背景 2017年7月7日,Apache Struts发布最新的安全公告,Apache Struts2-strus1-plugin插件存在远程代码执行的高危漏洞,漏洞编号为CVE-2017- ...
- 【研究】CVE-2017-11882-Office远程代码执行漏洞复现
实验环境:win10+kali 工具:koadic,Command43b_CVE-2017-11882.py KALI: root@kali:/opt/koadic-master# ./koadic ...
- socket基础篇
server_scoket.py #!/usr/bin/env python3.5 # -*- coding:utf-8 -*- import socket import subprocess ip_ ...
- OJ (Online Judge)使用
这是一种方式,我们还可使用另外一种方式: process.stdin.resume(); process.stdin.setEncoding('ascii'); var input = "& ...