转自:https://anifacc.github.io/deeplearning/machinelearning/python/2017/08/30/dlwp-ch14-keep-best-model-checkpoint/,感谢分享

深度学习模型花费时间大多很长, 如果一次训练过程意外中断, 那么后续时间再跑就浪费很多时间. 这一次练习中, 我们利用 Keras checkpoint 深度学习模型在训练过程模型, 我的理解是检查训练过程, 将好的模型保存下来. 如果训练过程意外中断, 那么我们可以加载最近一次的文件, 继续进行训练, 这样以前运行过的就可以忽略.

那么如何 checkpoint 呢, 通过练习来了解.

  • 数据: Pima diabete 数据
  • 神经网络拓扑结构: 8-12-8-1

1.效果提升检查

如果神经网络在训练过程中, 其训练效果有所提升, 则将该次模型训练参数保存下来.

代码:

# -*- coding: utf-8 -*-
# Checkpoint NN model imporvements from keras.models import Sequential
from keras.layers import Dense
from keras.callbacks import ModelCheckpoint import numpy as np import urllib url = "http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data"
raw_data = urllib.urlopen(url)
dataset = np.loadtxt(raw_data, delimiter=",") X = dataset[:, 0:8]
y = dataset[:, 8] seed = 42
np.random.seed(seed) # create model
model = Sequential()
model.add(Dense(12, input_dim=8, init='uniform', activation='relu'))
model.add(Dense(8, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid'))
# compile
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# checkpoint
filepath = "weights-improvement-{epoch:02d}-{val_acc:.2f}.hdf5"
# 中途训练效果提升, 则将文件保存, 每提升一次, 保存一次
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True,
mode='max')
callbacks_list = [checkpoint]
# Fit
model.fit(X, y, validation_split=0.33, nb_epoch=150, batch_size=10,
callbacks=callbacks_list, verbose=0)

部分结果:

Epoch 00139: val_acc did not improve
Epoch 00140: val_acc improved from 0.70472 to 0.71654, saving model to weights-improvement-140-0.72.hdf5
Epoch 00141: val_acc did not improve
Epoch 00142: val_acc did not improve
Epoch 00143: val_acc did not improve
Epoch 00144: val_acc did not improve
Epoch 00145: val_acc did not improve
Epoch 00146: val_acc did not improve
Epoch 00147: val_acc did not improve
Epoch 00148: val_acc did not improve
Epoch 00149: val_acc did not improve

在运行程序的本地文件夹下, 我们会发现许多性能提升时, 程序自动保存的 hdf5 文件.


2.检查最好模型

检查训练过程中训练效果最好的那个模型.

代码:

# -*- coding: utf-8 -*-
# # checkpoint the weights for the best model on validation accuracy
from keras.models import Sequential
from keras.layers import Dense
from keras.callbacks import ModelCheckpoint import numpy as np import urllib url = "http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data"
raw_data = urllib.urlopen(url)
dataset = np.loadtxt(raw_data, delimiter=",") X = dataset[:, 0:8]
y = dataset[:, 8] seed = 42
np.random.seed(seed) # create model
model = Sequential()
model.add(Dense(12, input_dim=8, init='uniform', activation='relu'))
model.add(Dense(8, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid'))
# compile
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# checkpoint
filepath='weights.best.hdf5'
# 有一次提升, 则覆盖一次.
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True,
mode='max')
callbacks_list = [checkpoint]
# fit
model.fit(X, y, validation_split=0.33, nb_epoch=150, batch_size=10,
callbacks=callbacks_list, verbose=0)

部分结果:

df5
Epoch 00044: val_acc did not improve
Epoch 00045: val_acc improved from 0.69685 to 0.69685, saving model to weights.best.hdf5
Epoch 00046: val_acc did not improve
Epoch 00047: val_acc did not improve
Epoch 00048: val_acc did not improve
Epoch 00049: val_acc improved from 0.69685 to 0.70472, saving model to weights.best.hdf5
...
Epoch 00140: val_acc improved from 0.70472 to 0.71654, saving model to weights.best.hdf5
Epoch 00141: val_acc did not improve
Epoch 00142: val_acc did not improve
Epoch 00143: val_acc did not improve
Epoch 00144: val_acc did not improve
Epoch 00145: val_acc did not improve
Epoch 00146: val_acc did not improve
Epoch 00147: val_acc did not improve
Epoch 00148: val_acc did not improve
Epoch 00149: val_acc did not improve

文件 weights.best.hdf5 将第140迭代时的模型权重保存.


3.加载保存模型

上面我们将训练过程中最好的模型保存下来, 如果训练有中断, 那么我们可以直接采用本次模型.

代码:

# -*- coding: utf-8 -*-
# Load and use weights from a checkpoint
from keras.models import Sequential
from keras.layers import Dense
from keras.callbacks import ModelCheckpoint import numpy as np import urllib url = "http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data"
raw_data = urllib.urlopen(url)
dataset = np.loadtxt(raw_data, delimiter=",") X = dataset[:, 0:8]
y = dataset[:, 8] seed = 42
np.random.seed(seed) # create model
model = Sequential()
model.add(Dense(12, input_dim=8, init='uniform', activation='relu'))
model.add(Dense(8, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid')) # load weights 加载模型权重
model.load_weights('weights.best.hdf5')
# compile 编译
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print('Created model and loaded weights from hdf5 file') # estimate
scores = model.evaluate(X, y, verbose=0)
print("{0}: {1:.2f}%".format(model.metrics_names[1], scores[1]*100))

结果:

Created model and loaded weights from hdf5 file
acc: 74.74%

4.Sum

本次练习如何将神经网络模型训练过程中, 训练效果最好的模型参数保存下来, 为以后的时候准备, 以备意外发生, 节省时间, 提高效率.

keras 保存训练的最佳模型的更多相关文章

  1. 人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型

    人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型 经过前面稍显罗嗦的准备工作,现在,我们终于可以尝试训练我们自己的卷积神经网络模型了.CNN擅长图像处理,keras库的te ...

  2. 转载:tensorflow保存训练后的模型

    训练完一个模型后,为了以后重复使用,通常我们需要对模型的结果进行保存.如果用Tensorflow去实现神经网络,所要保存的就是神经网络中的各项权重值.建议可以使用Saver类保存和加载模型的结果. 1 ...

  3. TensorFlow Saver 保存最佳模型 tf.train.Saver Save Best Model

      TensorFlow Saver 保存最佳模型 tf.train.Saver Save Best Model Checkmate is designed to be a simple drop-i ...

  4. keras系列︱Sequential与Model模型、keras基本结构功能(一)

    引自:http://blog.csdn.net/sinat_26917383/article/details/72857454 中文文档:http://keras-cn.readthedocs.io/ ...

  5. 第三十二节,使用谷歌Object Detection API进行目标检测、训练新的模型(使用VOC 2012数据集)

    前面已经介绍了几种经典的目标检测算法,光学习理论不实践的效果并不大,这里我们使用谷歌的开源框架来实现目标检测.至于为什么不去自己实现呢?主要是因为自己实现比较麻烦,而且调参比较麻烦,我们直接利用别人的 ...

  6. Keras/Tensorflow训练逻辑研究

    Keras是什么,以及相关的基础知识,这里就不做详细介绍,请参考Keras学习站点http://keras-cn.readthedocs.io/en/latest/ Tensorflow作为backe ...

  7. (数据科学学习手札44)在Keras中训练多层感知机

    一.简介 Keras是有着自主的一套前端控制语法,后端基于tensorflow和theano的深度学习框架,因为其搭建神经网络简单快捷明了的语法风格,可以帮助使用者更快捷的搭建自己的神经网络,堪称深度 ...

  8. 基于深度学习和迁移学习的识花实践——利用 VGG16 的深度网络结构中的五轮卷积网络层和池化层,对每张图片得到一个 4096 维的特征向量,然后我们直接用这个特征向量替代原来的图片,再加若干层全连接的神经网络,对花朵数据集进行训练(属于模型迁移)

    基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 Tens ...

  9. 使用 keras 和 tfjs 构建血细胞分类模型

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识!

随机推荐

  1. 最近闲着利用QQ协议写了一个聊天器

    最近闲着,把以前一个利用QQ协议写了的聊天器找出来玩,采用的是QQ比较稳定的协议,之前听说有人用WEB协议,或是安卓版QQ协议,都不太稳定.而我这个版的已经有好几年没动了.今天找出来依旧能登陆.获取好 ...

  2. HDU6311 Cover (欧拉路径->无向图有最少用多少条边不重复的路径可以覆盖一个张无向图)

    题意:有最少用多少条边不重复的路径可以覆盖一个张无向图 ,输出每条路径的边的序号 , 如果是反向就输出-id. 也就是可以多少次一笔画的方式画完这个无向图. 题解:我们已知最优胜的情况是整个图是欧拉图 ...

  3. layui table合计但是未计算的解决

    在项目里table开启合计功能,但是并未进行数据计算,后来发现是field写错了的问题,上代码 for(var i = 0; i < that.checkboxAll.data.length; ...

  4. 文献综述四:基于 UML 技术的客户关系管理系统实现

    一.基本信息 标题:基于 UML 技术的客户关系管理系统实现 时间:2015 出版源:电子设计工程 文件分类:uml技术的研究 二.研究背景 使用UML 建模技术和 B/S 架构访问模式,设计出可应用 ...

  5. postgresql数据库primary key约束/not null约束/unique约束及default值的添加与删除、列的新增/删除/重命名/数据类型的更改

    如果在建表时没有加primary key约束.not null约束.unique约束.default值,而是创建完表之后在某个字段添加的话 1.primary key约束的添加与删除 给red_pac ...

  6. pipline --学习 (-)

    一,语法: 编写位置: pipline 启动docker pipeline { agent { docker 'maven:3.3.3' } stages { stage('build') { ste ...

  7. vue中promise的使用

    vue中promise的使用 promise是处理异步的利器,在之前的文章<ES6之promise>中,我详细介绍了promise的使用, 在文章<js动画实现&&回 ...

  8. 60分钟内从零起步驾驭Hive实战学习笔记(Ubuntu里安装mysql)

    本博文的主要内容是: 1. Hive本质解析 2. Hive安装实战 3. 使用Hive操作搜索引擎数据实战 SparkSQL前身是Shark,Shark强烈依赖于Hive.Spark原来没有做SQL ...

  9. 在使用反射时,maven设置依赖范围引起的异常

    背景是,运用annotation进行权限控制,将一个包下面的类.进行反射,然后判断类的annotation,根据annotation设置权限 问题来了,包下面有5个类,在反射时报了 javqx.ser ...

  10. [linux]解决DNS配置重启丢失

    DNS配置重启丢失 每次重启后都修改DNS配置文件 /etc/resolv.conf从网上得知 /etc/resolv.conf中的DNS配置是从/etc/resolvconf/resolv.conf ...