Description

给出一棵树求三元组 \((x,y,z)\,,x<y<z\) 满足三个点两两之间距离相等,求三元组的数量

Solution

考虑暴力 \(DP\)

设 \(f[i][j]\) 表示距离点 \(i\) 的子树内距离为 \(j\) 的点的数量

设 \(g[i][j]\) 表示 \(i\) 子树内的一个二元组 \((x,y)\) 满足 \(dis(x,lca)=dis(y,lca)=dis(i,lca)+j\) 的二元组的数量,可以视为等待与子树外合并的二元组的数量

显然有转移:

\(ans+=g[x][0]\)

\(ans+=f[son][j]*g[x][j+1]+f[x][j-1]*g[son][j]\)

\(f[x][j]=f[son][j-1]\)

\(g[x][j]=g[son][j+1]\)

\(g[x][j]=f[x][j]*f[son][j-1]\)

这样转移是 \(O(n^2)\) 的

对于深度为下标的树形 \(DP\),考虑长链剖分优化:

在 \(DP\) 转移之前, \(f[x],g[x]\) 是没有值的,初值要设为某个儿子的 \(DP\) 值

并且这个时候的转移仅仅是 \(f[x][j]=f[son][j-1]\),\(g[x][j]=g[son][j+1]\)

相当于一个数组位移,直接用指针优化,可以做到 \(O(1)\),所以用所在链最长的儿子来赋初值复杂度最优,其余儿子暴力转移

这样做复杂度均摊就是 \(O(n)\) 的了,一条链只会在链顶被枚举到,且链不相交,所以每个点只会被枚一次

空间对于每一个链动态开空间,空间复杂度也是 \(O(n)\) 的

#include<bits/stdc++.h>
using namespace std;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c<='9'&&c>='0';c=getchar())x=x*10+(c&15);x*=f;
}
typedef long long ll;
const int N=1e5+10;
int n,head[N],nxt[N*2],to[N*2],num=0,dep[N],mx[N];
inline void link(int x,int y){nxt[++num]=head[x];to[num]=y;head[x]=num;}
ll lis[N*5],*f[N],*g[N],*st=lis+5,ans=0;
inline void dfs(int x,int fa){
mx[x]=x;
for(int i=head[x],u;i;i=nxt[i]){
if((u=to[i])==fa)continue;
dep[u]=dep[x]+1;dfs(u,x);
if(dep[mx[u]]>dep[mx[x]])mx[x]=mx[u];
}
for(int i=head[x],u;i;i=nxt[i]){
if((u=to[i])==fa || (mx[u]==mx[x] && x!=1))continue;
st+=dep[mx[u]]-dep[x]+1;
f[mx[u]]=st;
g[mx[u]]=++st;
st+=(dep[mx[u]]-dep[x])*2+1;
}
}
inline void dfs2(int x,int fa){
for(int i=head[x],u;i;i=nxt[i]){
if((u=to[i])==fa)continue;
dfs2(u,x);
if(mx[u]==mx[x])f[x]=f[u]-1,g[x]=g[u]+1;
}
f[x][0]=1;ans+=g[x][0];
for(int i=head[x],u;i;i=nxt[i]){
if((u=to[i])==fa || mx[u]==mx[x])continue;
for(int j=dep[mx[u]]-dep[x];j>=0;j--)
ans+=g[x][j+1]*f[u][j]+g[u][j]*(j?f[x][j-1]:0);
for(int j=dep[mx[u]]-dep[x];j>=0;j--){
f[x][j+1]+=f[u][j];
g[x][j]+=g[u][j+1];
g[x][j]+=f[x][j]*(j?f[u][j-1]:0);
}
}
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
cin>>n;
int x,y;
for(int i=1;i<n;i++)gi(x),gi(y),link(x,y),link(y,x);
dfs(1,1);dfs2(1,1);
cout<<ans<<endl;
return 0;
}

bzoj 4543: [POI2014]Hotel加强版的更多相关文章

  1. 【刷题】BZOJ 4543 [POI2014]Hotel加强版

    Description 同OJ3522 数据范围:n<=100000 Solution dp的设计见[刷题]BZOJ 3522 [Poi2014]Hotel 然后发现dp的第二维与深度有关,于是 ...

  2. BZOJ.4543.[POI2014]Hotel加强版(长链剖分 树形DP)

    题目链接 弱化版:https://www.cnblogs.com/SovietPower/p/8663817.html. 令\(f[x][i]\)表示\(x\)的子树中深度为\(i\)的点的个数,\( ...

  3. 4543: [POI2014]Hotel加强版

    4543: [POI2014]Hotel加强版 链接 分析: f[u][i]表示子树u内,距离u为i的点的个数,g[u][i]表示在子树u内,已经选了两个深度一样的点,还需要在距离u为i的一个点作为第 ...

  4. BZOJ3522&4543 [POI2014]Hotel加强版 长链剖分

    上上周见fc爷用长链剖分秒题 于是偷偷学一学 3522的数据范围很小 可以暴力枚举每个点作为根节点来dp 复杂度$O(n^2)$ 考虑令$f[x][j]$表示以$x$为根的子树内距离$x$为$j$的点 ...

  5. BZOJ4543 POI2014 Hotel加强版 【长链剖分】【DP】*

    BZOJ4543 POI2014 Hotel加强版 Description 同OJ3522 数据范围:n<=100000 Sample Input 7 1 2 5 7 2 5 2 3 5 6 4 ...

  6. 【BZOJ4543】[POI2014]Hotel加强版 长链剖分+DP

    [BZOJ4543][POI2014]Hotel加强版 Description 同OJ3522数据范围:n<=100000 Sample Input 7 1 2 5 7 2 5 2 3 5 6 ...

  7. bzoj4543 [POI2014]Hotel加强版 长链剖分+树形DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4543 题解 这道题的弱化版 bzoj3522 [POI2014]Hotel 的做法有好几种吧. ...

  8. BZOJ4543 [POI2014]Hotel加强版

    题意 有一个树形结构,每条边的长度相同,任意两个节点可以相互到达.选3个点.两两距离相等.有多少种方案? 数据范围:n<=100000 分析 参照小蒟蒻yyb的博客. 我们先考虑一个\(O(n^ ...

  9. BZOJ.3522.[POI2014]Hotel(DP)

    题目链接 BZOJ 洛谷 以为裸点分治,但数据范围怎么这么小?快打完了发现不对.. n^2做的话其实是个水题.. 枚举每一个点为根,为了不重复计算,我们要求所求的三个点必须分别位于三棵子树上. 考虑当 ...

随机推荐

  1. go语言 defer 你不知道的秘密!

    go 语言的defer功能强大,对于资源管理非常方便,但是如果没用好,也会有陷阱哦.我们先来看几个例子. 例一: defer 是先进后出 这个很自然,后面的语句会依赖前面的资源,因此如果先前面的资源先 ...

  2. rsync实时备份备份服务搭建和使用指南

    一.Rsync企业工作场景说明: 1.利用定时任务+rsync方式实现数据同步 对于网站内部技术人员创建的数据,可以采取定时任务的方式 2.利用实时任务+rsync方式实现数据同步 对于网站外部访问用 ...

  3. count failed: not master{ "note" : "from execCommand", "ok" : 0, "errmsg" : "not master" } at src/mongo/shell/query.js:191在SECONDARY节点无法show dbs

    count failed: not master{ "note" : "from execCommand", "ok" : 0, " ...

  4. 网址访问量统计插件 FlagCounter

    网址或博客访问量统计插件  ---> FlagCounter. 网址:http://s01.flagcounter.com/more/ERP2/

  5. JavaWeb学习笔记(七)—— JSP

    一.什么是JSP JSP全名是Java Server Pages,它是建立在Servlet规范之上的动态网页开发技术.在JSP文件中,HTML代码与Java代码共同存在,其中,HTML代码用来实现网页 ...

  6. IIS 配置 url 重写...

    <?xml version="1.0"?> <configuration> <system.webServer> <rewrite> ...

  7. 洛谷 P4859 && BZOJ3622: 已经没有什么好害怕的了

    题目描述 给出 \(n\) 个数 \(a_i\)​ ,以及 \(n\) 个数 \(b_i\)​ ,要求两两配对使得 \(a>b\) 的对数减去 \(a<b\) 的对数等于 \(k\) . ...

  8. F. Clear the String(区间 DP )//每次都删除一个相同字符的子串 , 最小多少次

    https://codeforces.com/contest/1132/problem/F 借鉴:https://www.cnblogs.com/chhokmah/p/10508762.html 题意 ...

  9. 简单易懂的VS-CODE C++环境配置(ACM向)

    网上教程比较繁琐,他们似乎要把vs-code变得无所不能,而我只是想代替dev进行简单的输入输出 所以大概花了1个多小时找到了能用的方法(中途还搞了个ubuntu子系统发现没啥用) 这里随便说下 1. ...

  10. C++ GUI Qt4 编程 (第二版)

    [加拿大]JasminBlanchette [英]MarkSummerfield . 电子工业 2008. 前几天的问题多是因为版本不兼容的问题. QT本身Q4 Q5就有版本问题,然后集成到VS08 ...