UNITY_MATRIX_IT_MV[Matrix]
http://blog.csdn.net/cubesky/article/details/38682975
前面发了一篇关于unity Matrix的文章。
http://blog.csdn.NET/cubesky/article/details/38664143
其中对于一般的Matrix可以说应该有一个清晰的了解了。但是对于UNITY_MATRIX_IT_MV这些matrix估计理解起来还是比较有问题。这里再重点描述一下UNITY_MATRIX_IT_MV。
首先,我们看一下unity中Doc中的描述:
| UNITY_MATRIX_IT_MV | float4x4 | Inverse transpose of model * view matrix. |
然后我们来看一下UNITY_MATRIX_IT_MV实际的变换意义
The transpose of World2Object is the transpose of the inverse of the Object2World matrix.
- MV transforms points from object to eye space
- IT_MV rotates normals from object to eye space
And similarly:
- Object2World transforms points from object to world space
- IT_Object2World (which, as you point out, is the transpose of World2Object) rotates normals from object to world space
If it is orthogonal, the upper-left 3x3 of Object2World will be equal to that of IT_Object2World, and so will also rotate normals from object to world space.
上面这里很好的描述了UNITY_MATRIX_IT_MV的使用场景,专门针对法线进行变换。但是为什么法线的变换和定点不一样呢?让我们来看一篇推导的文章。
The gl_NormalMatrix is present in many vertex shaders. In here some light is shed on what is this matrix and what is it for. This section was inspired by the excellent book by Eric Lengyel “Mathematics for 3D Game Programming and Computer Graphics”.
Many computations are done in eye space. This has to do with the fact that lighting is commonly performed in this space, otherwise eye position dependent effects, such as specular lights would be harder to implement.
Hence we need a way to transform the normal into eye space. To transform a vertex to eye space we can write:
vertexEyeSpace = gl_ModelViewMatrix * gl_Vertex;
So why can’t we just do the same with a normal vector? A normal is a vector of 3 floats and the modelview matrix is 4×4. Secondly, since the normal is a vector, we only want to transform its orientation. The region of the modelview matrix that contains the orientation is the top left 3×3 submatrix. So why not multiply the normal by this submatrix?
This could be easily achieved with the following code:
normalEyeSpace = vec3(gl_ModelViewMatrix * vec4(gl_Normal,0.0));
So, gl_NormalMatrix is just a shortcut to simplify code writing or to optimize it? No, not really. The above line of code will work in some circumstances but not all.
Lets have a look at a potential problem:

;
In the above figure we see a triangle, with a normal and a tangent vectors. The following figure shows what happens when the modelview matrix contains a non-uniform scale.

Note: if the scale was uniform, then the direction of the normal would have been preserved, The length would have been affected but this can be easily fixed with a normalization.
In the above figure the Modelview matrix was applied to all the vertices as well as to the normal and the result is clearly wrong: the transformed normal is no longer perpendicular to the surface.
We know that a vector can be expressed as the difference between two points. Considering the tangent vector, it can be computed as the difference between the two vertices of the triangle’s edge. If and
are the vertices that define the edge we know that:
Considering that a vector can be written as a four component tuple with the last component set to zero, we can multiply both sides of the equality with the Modelview matrix
This results in
As and
are the vertices of the transformed triangle,
remains tangent to the edge of the triangle. Hence, the Modelview preserves tangents, yet it does not preserve normals.
Considering the same approach used for vector T, we can find two points and
such that
The main issue is that the a vector defined through the transformed points, , does not necessarily remain normal, as shown in the figures above. The normal vector is not defined as a difference between two points, as the tangent vector, it is defined as a vector which is perpendicular to a surface.
So now we know that we can’t apply the Modelview in all cases to transform the normal vector. The question is then, what matrix should we apply?
Consider a 3×3 matrix G, and lets see how this matrix could be computed to properly transform the normal vectors.
We know that, prior to the matrix transformation T.N = 0, since the vectors are by definition perpendicular. We also know that after the transformation N’.T’ must remain equal to zero, since they must remain perpendicular to each other. T can be multiplied safely by the upper left 3×3 submatrix of the modelview (T is a vector, hence the w component is zero), let’s call this submatrix M.
Let’s assume that the matrix G is the correct matrix to transform the normal vector. T. Hence the following equation:
The dot product can be transformed into a product of vectors, therefore:
Note that the transpose of the first vector must be considered since this is required to multiply the vectors. We also know that the transpose of a multiplication is the multiplication of the transposes, hence:
We started by stating that the dot product between N and T was zero, so if
then we have
Which is exactly what we want. So we can compute G based on M.
Therefore the correct matrix to transform the normal is the transpose of the inverse of the M matrix. OpenGL computes this for us in the gl_NormalMatrix.
In the beginning of this section it was stated that using the Modelview matrix would work in some cases. Whenever the 3×3 upper left submatrix of the Modelview is orthogonal we have:
This is because with an orthogonal matrix, the transpose is the same as the inverse. So what is an orthogonal matrix? An orthogonal matrix is a matrix where all columns/rows are unit length, and are mutually perpendicular. This implies that when two vectors are multiplied by such a matrix, the angle between them after transformation by an orthogonal matrix is the same as prior to that transformation. Simply put the transformation preserves the angle relation between vectors, hence transformed normals remain perpendicular to tangents! Furthermore it preserves the length of the vectors as well.
So when can we be sure that M is orthogonal? When we limit our geometric operations to rotations and translations, i.e. when in the OpenGL application we only use glRotate and glTranslate and not glScale. These operations guarantee that M is orthogonal. Note: gluLookAt also creates an orthogonal matrix!
注:之所以法线不能直接使用UNITY_MATRIX_MV进行变换,是因为法线是向量,具有方向,在进行空间变换的时候,如果发生非等比缩放,方向会发生偏移。为什么呢?拿上面的例子来说,我们可以简单的把法线和切线当成三角形的两条边,显然,三角形在空间变换的时候,不管是平移,还是旋转,或者是等比缩放,都不会变形,但是如果非等比缩放,就会发生拉伸。所以法线和切线的夹角也就会发生变化。(而切线在变换前后,方向总是正确的,所以法线方向就不正确了)。
参考:
http://www.lighthouse3d.com/tutorials/glsl-tutorial/the-normal-matrix/
http://forum.Unity3D.com/threads/_object2world-or-unity_matrix_it_mv.112446/
http://www.cnblogs.com/kesalin/archive/2012/12/06/3D_math.html
UNITY_MATRIX_IT_MV[Matrix]的更多相关文章
- UNITY_MATRIX_IT_MV[Matrix] (转载)
转载 http://blog.csdn.net/cubesky/article/details/38682975 前面发了一篇关于unity Matrix的文章. http://blog.csdn.n ...
- 旋转矩阵(Rotation Matrix)的推导及其应用
向量的平移,比较简单. 缩放也较为简单 矩阵如何进行计算呢?之前的文章中有简介一种方法,把行旋转一下,然后与右侧对应相乘.在谷歌图片搜索旋转矩阵时,看到这张动图,觉得表述的很清晰了. 稍微复杂一点的是 ...
- angular2系列教程(十一)路由嵌套、路由生命周期、matrix URL notation
今天我们要讲的是ng2的路由的第二部分,包括路由嵌套.路由生命周期等知识点. 例子 例子仍然是上节课的例子:
- Pramp mock interview (4th practice): Matrix Spiral Print
March 16, 2016 Problem statement:Given a 2D array (matrix) named M, print all items of M in a spiral ...
- Atitit Data Matrix dm码的原理与特点
Atitit Data Matrix dm码的原理与特点 Datamatrix原名Datacode,由美国国际资料公司(International Data Matrix, 简称ID Matrix)于 ...
- Android笔记——Matrix
转自:http://www.cnblogs.com/qiengo/archive/2012/06/30/2570874.html#translate Matrix的数学原理 在Android中,如果你 ...
- 通过Matrix进行二维图形仿射变换
Affine Transformation是一种二维坐标到二维坐标之间的线性变换,保持二维图形的"平直性"和"平行性".仿射变换可以通过一系列的原子变换的复合来 ...
- [LeetCode] Kth Smallest Element in a Sorted Matrix 有序矩阵中第K小的元素
Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth ...
- [LeetCode] Longest Increasing Path in a Matrix 矩阵中的最长递增路径
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
随机推荐
- GET,POST
HTTPHTTP(即超文本传输协议)是现代网络中最常见和常用的协议之一,设计它的目的是保证客户机和服务器之间的通信.HTTP 的工作方式是客户端与服务器之间的 “请求-响应” 协议.客户端可以是 We ...
- 【BZOJ2081】[Poi2010]Beads hash+调和级数
[BZOJ2081][Poi2010]Beads Description Zxl有一次决定制造一条项链,她以非常便宜的价格买了一长条鲜艳的珊瑚珠子,她现在也有一个机器,能把这条珠子切成很多块(子串), ...
- 关于mac上的maven
1 mac上的maven的JAVA_HOME mac上maven的JAVA_HOME不是环境变量的JAVA_HOME,而是~/.mavenrc中的JAVA_HOME. 2 彻底解决mac上使用mvn ...
- 【python】-- 元组、字典
元组 元组其实跟列表差不多,也是存一组数,只不是它一旦创建,便不能再修改,所以又叫只读列表 用途:一般情况下用于自己写的程序能存下数据,但是又希望这些数据不会被改变,比如:数据库连接信息等 1.访问元 ...
- python数据分析之:数据聚合与分组运算
在数据库中,我们可以对数据进行分类,聚合运算.例如groupby操作.在pandas中同样也有类似的功能.通过这些聚合,分组操作,我们可以很容易的对数据进行转换,清洗,运算.比如如下图,首先通过不同的 ...
- 阿里云修改centos7主机名
为了玩Docker,买个阿里云主机也是够拼的了. [root@iZ284olvkmjZ ~]# 不过主机名中怎么好DT,无奈,修改. 我们需要的是永久生效,阿里云提供了两种方法: 方法(1). 输入h ...
- linux多个分区合并为一个分区
备份# rsync -avP -e ssh /data xxx卸载# umount /data /data?设置分区类型为8e# fdisk /dev/sdb 创建PV# pvcreate /dev/ ...
- HTML哪些是块级元素,哪些是行内元素、
块级元素:块级大多为结构性标记 <address>...</adderss> <center>...</center> 地址文字 <h1> ...
- Ubuntu安装教程
http://www.linuxdiyf.com/linux/13198.html 简易配置说明 磁盘分区,新分区的磁盘必须是未分配的, 到管理-磁盘管理下面查看磁盘是不是未分配的,如果已分配了,在磁 ...
- CAS的实现Atomic类库
atomic 原子(atomic)本意是"不能被进一步分割的最小粒子",而原子操作(atomic operation)意为"不可被中断的一个或一系列操作".在多 ...