题目

In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_ (data_structure)) One thing for sure is that all the keys along any path from the root to a leaf in a max/min heap must be in non-increasing/non-decreasing order.

Your job is to check every path in a given complete binary tree, in order to tell if it is a heap or not.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (1<N≤1,000), the number of keys in the tree. Then the next line contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.

Output Specification:

For each given tree, first print all the paths from the root to the leaves. Each path occupies a line, with all the numbers separated by a space, and no extra space at the beginning or the end of the line. The paths must be printed in the following order: for each node in the tree, all the paths in its right subtree must be printed before those in its lef subtree.

Finally print in a line Max Heap if it is a max heap, or Min Heap for a min heap, or Not Heap if it is not a heap at all.

Sample Input 1:

8

98 72 86 60 65 12 23 50

Sample Output 1:

98 86 23

98 86 12

98 72 65

98 72 60 50

Max Heap

Sample Input 2:

8

8 38 25 58 52 82 70 60

Sample Output 2:

8 25 70

8 25 82

8 38 52

8 38 58 60

Min Heap

Sample Input 3:

8

10 28 15 12 34 9 8 56

Sample Output 3:

10 15 8

10 15 9

10 28 34

10 28 12 56

Not Heap

题目分析

已知完全二叉树层序序列,打印所有路径(从根节点到叶子节点)并判断是否为堆,为大顶堆还是小顶堆

解题思路

  1. 打印路径

    思路01:dfs深度优先遍历,用整型数组path[n]记录路径进行回溯

    思路02:dfs深度优先遍历,用vector vin链表记录路径进行回溯
  2. 判断是否为堆,为大顶堆还是小顶堆

    思路01:递归判断,用父节点与其左右子节点进行比较判断

    思路02:for循环,用所有子节点与其父节点进行比较判断

Code

Code 01

#include <iostream>
using namespace std;
/*
利用数组回溯
*/
int level[1001],path[1001];
int n;
void printPath(int pin) {
for(int i=0; i<=pin; i++) {
printf("%d",path[i]);
printf("%s",i==pin?"\n":" ");
}
}
void dfs(int vin, int pin) {
path[pin]=level[vin];
if(2*vin+1>=n) { //左右子节点都为NULL 2*vin+1>=n则一定2*vin+2>=n
printPath(pin);
return;
} else if(2*vin+2>=n) { //左子节点非NULL 右子节点为NULL
path[pin+1]=level[2*vin+1]; //添加左子节点后 打印退出
printPath(pin+1);
return;
} else {
dfs(2*vin+2,pin+1);
dfs(2*vin+1,pin+1);
}
}
bool isMaxHeap(int vin) {
if(2*vin+1>=n)return true; //左右子节点都为NULL 2*vin+1>=n则一定2*vin+2>=n
if(2*vin+1<n&&level[2*vin+1]>level[vin])return false;
if(2*vin+2<n&&level[2*vin+2]>level[vin])return false;
return isMaxHeap(2*vin+1)&&isMaxHeap(2*vin+2);
}
bool isMinHeap(int vin) {
if(2*vin+1>=n)return true; //左右子节点都为NULL 2*vin+1>=n则一定2*vin+2>=n
if(2*vin+1<n&&level[2*vin+1]<level[vin])return false;
if(2*vin+2<n&&level[2*vin+2]<level[vin])return false;
return isMinHeap(2*vin+1)&&isMinHeap(2*vin+2);
}
int main(int argc,char * argv[]) {
scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&level[i]);
}
dfs(0,0);
if(isMaxHeap(0)) {
printf("Max Heap\n");
} else if(isMinHeap(0)) {
printf("Min Heap\n");
} else {
printf("Not Heap\n");
}
return 0;
}

Code 02

#include <iostream>
#include <vector>
using namespace std;
/*
利用链表回溯
*/
int level[1001];
vector<int> path;
int n,isMax=1,isMin=1;
void printPath() {
for(int i=0; i<path.size(); i++) {
printf("%d",path[i]);
printf("%s",i==pin?"\n":" ");
}
}
void dfs(int vin) {
if(2*vin+1>=n) { //左右子节点都为NULL 2*vin+1>=n则一定2*vin+2>=n
printPath();
} else if(2*vin+2>=n) {//左子节点非NULL 右子节点为NULL
path.push_back(level[2*vin+1]);
printPath();
path.pop_back();
} else {
path.push_back(level[2*vin+2]);
dfs(2*vin+2);
path.pop_back();
path.push_back(level[2*vin+1]);
dfs(2*vin+1);
path.pop_back();
}
}
int main(int argc,char * argv[]) {
scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&level[i]);
}
path.push_back(level[0]);
dfs(0);
for(int i=1;i<n;i++){
if(level[(i-1)/2]>level[i])isMin=0; //如果i是从1存储的,这里应该是level[i/2]>level[i]
if(level[(i-1)/2]<level[i])isMax=0;
}
if(isMax==1) {
printf("Max Heap\n");
} else if(isMin==1) {
printf("Min Heap\n");
} else {
printf("Not Heap\n");
}
return 0;
}

Code 03

#include <iostream>
using namespace std;
/*
利用数组回溯
*/
int level[1001],path[1001];
int n,isMax=1,isMin=1;
void printPath(int pin) {
for(int i=0; i<=pin; i++) {
printf("%d",path[i]);
printf("%s",i==pin?"\n":" ");
}
}
void dfs(int vin, int pin) {
path[pin]=level[vin];
if(2*vin+1>=n) { //左右子节点都为NULL 2*vin+1>=n则一定2*vin+2>=n
printPath(pin);
return;
} else if(2*vin+2>=n) { //左子节点非NULL 右子节点为NULL
path[pin+1]=level[2*vin+1]; //添加左子节点后 打印退出
printPath(pin+1);
return;
} else {
dfs(2*vin+2,pin+1);
dfs(2*vin+1,pin+1);
}
}
int main(int argc,char * argv[]) {
scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&level[i]);
}
dfs(0,0);
for(int i=1;i<n;i++){
if(level[(i-1)/2]>level[i])isMin=0; //如果i是从1存储的,这里应该是level[i/2]>level[i]
if(level[(i-1)/2]<level[i])isMax=0;
}
if(isMax==1) {
printf("Max Heap\n");
} else if(isMin==1) {
printf("Min Heap\n");
} else {
printf("Not Heap\n");
}
return 0;
}

PAT Advanced 1155 Heap Paths (30) [DFS, 深搜回溯,堆]的更多相关文章

  1. PAT Advanced 1155 Heap Paths (30 分)

    In computer science, a heap is a specialized tree-based data structure that satisfies the heap prope ...

  2. PAT甲级 1155 Heap Paths (30分) 堆模拟

    题意分析: 给出一个1000以内的整数N,以及N个整数,并且这N个数是按照完全二叉树的层序遍历输出的序列,输出所有的整条的先序遍历的序列(根 右 左),以及判断整棵树是否是符合堆排序的规则(判断是大顶 ...

  3. UVA 165 Stamps (DFS深搜回溯)

     Stamps  The government of Nova Mareterrania requires that various legal documents have stamps attac ...

  4. pat甲级 1155 Heap Paths (30 分)

    In computer science, a heap is a specialized tree-based data structure that satisfies the heap prope ...

  5. PAT 甲级 1155 Heap Paths

    https://pintia.cn/problem-sets/994805342720868352/problems/1071785408849047552 In computer science, ...

  6. PTA 1155 Heap Paths (DFS)

    题目链接:1155 Heap Paths (30 分) In computer science, a heap is a specialized tree-based data structure t ...

  7. HDU5723 Abandoned country (最小生成树+深搜回溯法)

    Description An abandoned country has n(n≤100000) villages which are numbered from 1 to n. Since aban ...

  8. DFS深搜——Red and Black——A Knight&#39;s Journey

    深搜,从一点向各处搜找到全部能走的地方. Problem Description There is a rectangular room, covered with square tiles. Eac ...

  9. DFS 深搜专题 入门典例 -- 凌宸1642

    DFS 深搜专题 入门典例 -- 凌宸1642 深度优先搜索 是一种 枚举所有完整路径以遍历所有情况的搜索方法 ,使用 递归 可以很好的实现 深度优先搜索. 1 最大价值 题目描述 ​ 有 n 件物品 ...

随机推荐

  1. dMd----攻防世界

    首先在Linux上查看题目,没有什么发现elf文件,之后使用ida打开看看,找到main函数,f5查看, 上图一些字符是char过的,便于查看,发现是一个if else语句,先经过了MD5加密然后判断 ...

  2. 【capstone/ropgadget】环境配置

    具体环境配置可参考 https://github.com/JonathanSalwan/ROPgadget/tree/master 作者给出的安装方式 但具体配置中出现了问题,如引用时出现如下错误: ...

  3. 针对phpstudy默认设置的利用

    在phpstudy下载下来以后路径,设置没有修改的情况下可以使用此方法 url:http://ip/phpmyadmin用户名:root 密码:root登入管理界面变量-->general lo ...

  4. 如何创建一个SpringBoot多模块项目

    创建主模块rail-plate-line 1.点击Create New Project  --> 选择Spring Initializr  -- > 选择本地jdk 2.Group为com ...

  5. C++中的简单继承

    Father.cpp: #include<iostream> using namespace std; class Father { protected: int width; int h ...

  6. bug-解决微信页面input键盘不回弹问题

    pageReturn () { this.$refs.phoneValue.blur(); this.$refs.verifyCode.blur(); setTimeout(() => { wi ...

  7. 08.swoole学习笔记--异步tcp客户端

    <?php //创建异步tcp客户端 $client=new swoole_client(SWOOLE_SOCK_TCP,SWOOLE_SOCK_ASYNC); //注册连接成功的回调函数 $c ...

  8. Run K8s / 安装指南

    Windows 下载 kubectl 官方文档下载对应操作系统的 Kubectl 下载 minikube 如图将下载的文件放在一起,如图:   配置环境变量,如图:   配置Hype-V或者安装Vir ...

  9. java注解——内置注解和四种元注解

    java内置注解: @Override(重写方法):被用于标注方法,用于说明所标注的方法是重写父类的方法 @Deprecated(过时方法):用于说明所标注元素,因存在安全问题或有更好选择而不鼓励使用 ...

  10. 谈谈对MapTask任务分配和Shuffle的理解

    一.切片与MapTask的关系 1.概述 大家要注意区分切片与切块的区别: 切块Block是HDFS物理上把数据分成一块一块的,默认是128M: 数据切片:只是在逻辑上对输入进行分片,并不会在磁盘上分 ...