MapReduce案例之自定义groupingComparator


求取Top 1的数据

  • 需求

    求出每一个订单中成交金额最大的一笔交易
订单id			商品id	成交金额
Order_0000005 Pdt_01 222.8
Order_0000005 Pdt_05 25.8
Order_0000002 Pdt_03 322.8
Order_0000002 Pdt_04 522.4
Order_0000002 Pdt_05 822.4
Order_0000003 Pdt_01 222.8
  • 代码实现

自定义一个javaBean,命名为OrderBean

package cn.itcast.demo5;

import org.apache.hadoop.io.WritableComparable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException; public class OrderBean implements WritableComparable<OrderBean> {
//定义orderId和price变量
private String orderId;
private Double price; /**
* 重写compareTo方法
*
* @param o
* @return
*/
@Override
public int compareTo(OrderBean o) {
//先对orderId进行比较,如果相同,将它们的price放一起比较,不同就不比较
int result = this.orderId.compareTo(o.orderId);
//进行判断
if (result == 0) {
int i = this.price.compareTo(o.price);
return -i; //返回i求取最小值,返回-i求取最大值
}
return result; } @Override
public void write(DataOutput out) throws IOException {
out.writeUTF(orderId);
out.writeDouble(price);
} @Override
public void readFields(DataInput in) throws IOException {
this.orderId = in.readUTF();
this.price = in.readDouble();
} //生成get(),set()方法 public String getOrderId() {
return orderId;
} public void setOrderId(String orderId) {
this.orderId = orderId;
} public double getPrice() {
return price;
} public void setPrice(Double price) {
this.price = price;
} //生成toString()方法 @Override
public String toString() {
return orderId + "\t" + price;
}
}

定义一个Mapper类

package cn.itcast.demo5;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; public class GroupMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//分割获取到的数据
String[] split = value.toString().split("\t"); //创建orderBean对象
OrderBean orderBean = new OrderBean();
//给orderId赋值
orderBean.setOrderId(split[0]);
//给price赋值
orderBean.setPrice(Double.valueOf(split[2])); context.write(orderBean, NullWritable.get());
}
}

自定义分区(Partition)规则

package cn.itcast.demo5;

import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Partitioner; public class GroupPartitioner extends Partitioner<OrderBean, NullWritable> {
/**
* 重写分区方法
*
* @param orderBean
* @param nullWritable
* @param i
* @return
*/
@Override
public int getPartition(OrderBean orderBean, NullWritable nullWritable, int i) {
//参照HashPartitioner的重写方法
return (orderBean.getOrderId().hashCode() & Integer.MAX_VALUE) % i;
}
}

自定义分组(groupingComparator)规则

package cn.itcast.demo5;

import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator; public class GroupComparator extends WritableComparator { //重写无参构造方法,定义反射出来的对象是OrderBean类
public GroupComparator() {
super(OrderBean.class, true);
} @Override
public int compare(WritableComparable a, WritableComparable b) {
OrderBean first = (OrderBean) a;
OrderBean second = (OrderBean) b;
//比较orderId,如果相同就认为是同一组数据
return first.getOrderId().compareTo(second.getOrderId());
}
}

定义一个Reducer类

package cn.itcast.demo5;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class GroupReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable> {
/**
* 直接将收到的k2,v2的值转换为k3,v3输出
*
* @param key
* @param values
* @param context
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
context.write(key, values.iterator().next());
}
}

程序main函数入口

package cn.itcast.demo5;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class GroupMain extends Configured implements Tool {
@Override
public int run(String[] args) throws Exception {
//获取Job对象
Job job = Job.getInstance(super.getConf(), "myGroupComparator");
//输入数据,设置输入路径
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.setInputPaths(job, new Path("file:////Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/自定义groupingComparator/input/orders.txt")); //自定义Map逻辑
job.setMapperClass(GroupMapper.class);
//设置k2,v2输出类型
job.setMapOutputKeyClass(OrderBean.class);
job.setMapOutputValueClass(NullWritable.class); //自定义Partition逻辑
job.setPartitionerClass(GroupPartitioner.class); //自定义分组逻辑
job.setGroupingComparatorClass(GroupComparator.class); //自定义reduce逻辑
job.setReducerClass(GroupReducer.class);
//设置k3,v3输出类型
job.setOutputKeyClass(OrderBean.class);
job.setOutputValueClass(NullWritable.class); //输出数据,设置输出路径
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job, new Path("file:////Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/自定义groupingComparator/output_top1")); //提交任务至集群
boolean b = job.waitForCompletion(true);
return b ? 0 : 1;
} public static void main(String[] args) throws Exception {
int run = ToolRunner.run(new Configuration(), new GroupMain(), args);
System.exit(run);
}
}
  • 运行结果
Order_0000002	822.4
Order_0000003 222.8
Order_0000005 222.8

求取TopN的数据

  • 需求

    求取Top1运用了GroupBy的规则,排序后,不需要再进行操作,就会自动输出首个数据

    如果要获取TopN的数据就需要在Reduce逻辑中添加循环遍历,所有的NullWritable转换为DoubleWritable,其他都不变

  • 代码实现

自定义一个javaBean,命名为OrderBean

package cn.itcast.demo6;

import org.apache.hadoop.io.WritableComparable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException; public class OrderBean implements WritableComparable<OrderBean> {
//定义orderId和price变量
private String orderId;
private Double price; /**
* 重写compareTo方法
*
* @param o
* @return
*/
@Override
public int compareTo(OrderBean o) {
//先对orderId进行比较,如果相同,将它们的price放一起比较,不同就不比较
int result = this.orderId.compareTo(o.orderId);
//进行判断
if (result == 0) {
int i = this.price.compareTo(o.price);
return -i; //返回i求取最小值,返回-i求取最大值
}
return result; } @Override
public void write(DataOutput out) throws IOException {
out.writeUTF(orderId);
out.writeDouble(price);
} @Override
public void readFields(DataInput in) throws IOException {
this.orderId = in.readUTF();
this.price = in.readDouble();
} //生成get(),set()方法 public String getOrderId() {
return orderId;
} public void setOrderId(String orderId) {
this.orderId = orderId;
} public double getPrice() {
return price;
} public void setPrice(Double price) {
this.price = price;
} //生成toString()方法 @Override
public String toString() {
return orderId + "\t" + price;
}
}

定义一个Mapper类

package cn.itcast.demo6;

import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; public class GroupMapper extends Mapper<LongWritable, Text, OrderBean, DoubleWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//分割获取到的数据
String[] split = value.toString().split("\t"); //创建orderBean对象
OrderBean orderBean = new OrderBean();
//给orderId赋值
orderBean.setOrderId(split[0]);
//给price赋值
orderBean.setPrice(Double.valueOf(split[2])); DoubleWritable doubleWritable = new DoubleWritable(Double.valueOf(split[2]));
context.write(orderBean, doubleWritable);
}
}

自定义分区(Partition)规则

package cn.itcast.demo6;

import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Partitioner; public class GroupPartitioner extends Partitioner<OrderBean, DoubleWritable> {
/**
* 重写分区方法
*
* @param orderBean
* @param doubleWritable
* @param i
* @return
*/
@Override
public int getPartition(OrderBean orderBean, DoubleWritable doubleWritable, int i) {
//参照HashPartitioner的重写方法
return (orderBean.getOrderId().hashCode() & Integer.MAX_VALUE) % i;
}
}

自定义分组(groupingComparator)规则

package cn.itcast.demo6;

import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator; public class GroupComparator extends WritableComparator { //重写无参构造方法,定义反射出来的对象是OrderBean类
public GroupComparator() {
super(OrderBean.class, true);
} @Override
public int compare(WritableComparable a, WritableComparable b) {
OrderBean first = (OrderBean) a;
OrderBean second = (OrderBean) b;
//比较orderId,如果相同就认为是同一组数据
return first.getOrderId().compareTo(second.getOrderId());
}
}

定义一个Reducer类

package cn.itcast.demo6;

import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class GroupReducer extends Reducer<OrderBean, DoubleWritable, OrderBean, DoubleWritable> {
/**
* 直接将收到的k2,v2的值转换为k3,v3输出
*
* @param key
* @param values
* @param context
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void reduce(OrderBean key, Iterable<DoubleWritable> values, Context context) throws IOException, InterruptedException {
int i = 0;
for (DoubleWritable value : values) {
i++;
if (i <= 2) {
context.write(key, value);
} else {
break;
}
}
}
}

程序main函数入口

package cn.itcast.demo6;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class GroupMain extends Configured implements Tool {
@Override
public int run(String[] args) throws Exception {
//获取Job对象
Job job = Job.getInstance(super.getConf(), "myGroupComparator");
//输入数据,设置输入路径
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.setInputPaths(job, new Path("file:////Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/自定义groupingComparator/input/orders.txt")); //自定义Map逻辑
job.setMapperClass(GroupMapper.class);
//设置k2,v2输出类型
job.setMapOutputKeyClass(OrderBean.class);
job.setMapOutputValueClass(DoubleWritable.class); //自定义Partition逻辑
job.setPartitionerClass(GroupPartitioner.class); //自定义分组逻辑
job.setGroupingComparatorClass(GroupComparator.class); //自定义reduce逻辑
job.setReducerClass(GroupReducer.class);
//设置k3,v3输出类型
job.setOutputKeyClass(OrderBean.class);
job.setOutputValueClass(DoubleWritable.class); //输出数据,设置输出路径
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job, new Path("file:////Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/自定义groupingComparator/output_top2")); //提交任务至集群
boolean b = job.waitForCompletion(true);
return b ? 0 : 1;
} public static void main(String[] args) throws Exception {
int run = ToolRunner.run(new Configuration(), new GroupMain(), args);
System.exit(run);
}
}
  • 运行结果
Order_0000002	822.4	822.4
Order_0000002 522.4 522.4
Order_0000003 222.8 222.8
Order_0000005 222.8 222.8
Order_0000005 25.8 25.8

【Hadoop离线基础总结】MapReduce案例之自定义groupingComparator的更多相关文章

  1. 【Hadoop离线基础总结】Hue的简单介绍和安装部署

    目录 Hue的简单介绍 概述 核心功能 安装部署 下载Hue的压缩包并上传到linux解压 编译安装启动 启动Hue进程 hue与其他框架的集成 Hue与Hadoop集成 Hue与Hive集成 Hue ...

  2. 【Hadoop离线基础总结】oozie的安装部署与使用

    目录 简单介绍 概述 架构 安装部署 1.修改core-site.xml 2.上传oozie的安装包并解压 3.解压hadooplibs到与oozie平行的目录 4.创建libext目录,并拷贝依赖包 ...

  3. 【Hadoop离线基础总结】impala简单介绍及安装部署

    目录 impala的简单介绍 概述 优点 缺点 impala和Hive的关系 impala如何和CDH一起工作 impala的架构及查询计划 impala/hive/spark 对比 impala的安 ...

  4. 【Hadoop离线基础总结】Hive调优手段

    Hive调优手段 最常用的调优手段 Fetch抓取 MapJoin 分区裁剪 列裁剪 控制map个数以及reduce个数 JVM重用 数据压缩 Fetch的抓取 出现原因 Hive中对某些情况的查询不 ...

  5. 【Hadoop离线基础总结】流量日志分析网站整体架构模块开发

    目录 数据仓库设计 维度建模概述 维度建模的三种模式 本项目中数据仓库的设计 ETL开发 创建ODS层数据表 导入ODS层数据 生成ODS层明细宽表 统计分析开发 流量分析 受访分析 访客visit分 ...

  6. 【Hadoop离线基础总结】Sqoop常用命令及参数

    目录 常用命令 常用公用参数 公用参数:数据库连接 公用参数:import 公用参数:export 公用参数:hive 常用命令&参数 从关系表导入--import 导出到关系表--expor ...

  7. 【Hadoop离线基础总结】MapReduce增强(上)

    MapReduce增强 MapReduce的分区与reduceTask的数量 概述 MapReduce当中的分区:物以类聚,人以群分.相同key的数据,去往同一个reduce. ReduceTask的 ...

  8. 【Hadoop离线基础总结】MapReduce倒排索引建立

    MapReduce倒排索引建立 求某些单词在文章中出现多少次 有三个文档的内容,求hello,tom,jerry三个单词在其中各出现多少次 hello tom hello jerry hello to ...

  9. 【Hadoop离线基础总结】工作流调度器azkaban

    目录 Azkaban概述 工作流调度系统的作用 工作流调度系统的实现 常见工作流调度工具对比 Azkaban简单介绍 安装部署 Azkaban的编译 azkaban单服务模式安装与使用 azkaban ...

随机推荐

  1. JMeter分布式压测-常见问题之( Cannot start. localhost.localdomain is a loopback address)

    问题描述: JMeter分布式测试时,以Linux系统作为被测服务器,在其中启动 jmeter-server 服务时出现异常,系统提示如下: [root@localhost bin]# ./jmete ...

  2. sublime查看项目代码多少行

    ---------------------sublime   0.右击要查找的文件; 1.勾选正则( .* ); 3.输入正则表达式 ^[ \t]*[^ \t\n\r]+.*$ 0:搜索 \n 是不是 ...

  3. 从零开始学习docker之在docker中运行springboot项目

    一.docker环境配置 首先需要一个安装了docker的服务器(本地或者云服务器),如果没有请看上文,传送门---https://www.cnblogs.com/wdfordream/p/12737 ...

  4. JavaScript之预编译

    javascript是一种解释性弱类型语言,在浏览器中执行时,浏览器会先预览某段代码进行语法分析,检查语法的正确与否,然后再进行预编译,到最后才会从上往下一句一句开始执行这段代码,简单得来说可以表示为 ...

  5. str_pad 和 filter_var

    这两个函数都是php内置函数,filter_var可直接过滤,比如邮箱,ip等,str_pad可补充字符串eg: 1  =>  001

  6. cdn服务器

    CDN的基本原理和基础架构 CDN是将源站内容分发至最接近用户的节点,使用户可就近取得所需内容,提高用户访问的响应速度和成功率.解决因分布.带宽.服务器性能带来的访问延迟问题,适用于站点加速.点播.直 ...

  7. Java语言和C++语言的差异

    Java采用了C及C++的语法格式,对于学习过C及C++的程序设计者来说,学习Java将有可能很轻松.但是,如果仔细检查Java语言的许多细节,就会发现Java取消了不少C及C++的特性,并且加入了一 ...

  8. Mybatis自动生成插件对数据库类型为text的处理

    2019独角兽企业重金招聘Python工程师标准>>> 如果数据库中的字段为text或者blob这种大文本类型,在使用MybatisGenerator工具自动生成代码的时候会将其进行 ...

  9. php-fpm7 启动脚本

    [root@bbs init.d]$ cat php-fpm7 #!/bin/sh # DateTime:20170918 # Source function library. . /etc/rc.d ...

  10. CodeForces - 1047A

    A. Little C Loves 3 I time limit per test1 second memory limit per test256 megabytes inputstandard i ...