Description

 

Programming contests became so popular in the year 2397 that the governor of New Earck -- the largest human-inhabited planet of the galaxy -- opened a special Alley of Contestant Memories (ACM) at the local graveyard. The ACM encircles a green park, and holds the holographic statues of famous contestants placed equidistantly along the park perimeter. The alley has to be renewed from time to time when a new group of memorials arrives.

When new memorials are added, the exact place for each can be selected arbitrarily along the ACM, but the equidistant disposition must be maintained by moving some of the old statues along the alley.

Surprisingly, humans are still quite superstitious in 24th century: the graveyard keepers believe the holograms are holding dead people souls, and thus always try to renew the ACM with minimal possible movements of existing statues (besides, the holographic equipment is very heavy). Statues are moved along the park perimeter. Your work is to find a renewal plan which minimizes the sum of travel distances of all statues. Installation of a new hologram adds no distance penalty, so choose the places for newcomers wisely!

Input

The input file contains several test cases, each of them consists of a a line that contains two integer numbers: n<tex2html_verbatim_mark> -- the number of holographic statues initially located at the ACM, and m<tex2html_verbatim_mark> -- the number of statues to be added (2n1000, 1m1000)<tex2html_verbatim_mark> . The length of the alley along the park perimeter is exactly 10 000 feet.

Output

For each test case, write to the output a line with a single real number -- the minimal sum of travel distances of all statues (in feet). The answer must be precise to at least 4 digits after decimal point.

<tex2html_verbatim_mark>

Pictures show the first three examples. Marked circles denote original statues, empty circles denote new equidistant places, arrows denote movement plans for existing statues.

Sample Input

2 1
2 3
3 1
10 10

Sample Output

1666.6667
1000.0
1666.6667
0.0 题目大意:在一个周长10000的圆上等间距分布n个雕塑,现又加入m个(位置可以随意),希望所有n+m个塑像在圆上均匀分布。这就需要移动一些原有的塑像。要求n个塑像移动的总距离最小,输入n,m输出最小距离,小数点后4位。
解题思路:总是有一个雕塑没有移动,于是假设这个为原点,逆时针给n个点标号,表示到原点的距离【这里是比例距离】接下来我们把每个点移动到离它最近的距离,如果没有2个雕像移动到相同的位置,那么这样的移动一定是最优的。代码中,坐标为pos的雕塑移动的目的坐标位置是:floor(pos+0.5),就是四舍五入的结果。就是坐标缩小的好处。


 #include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int main(){
int n,m;
while(cin>>n>>m){
double ans=0.0;
for(int i=;i<n;i++){
double pos=(double)i/n*(n+m);//计算每个需要移动的雕塑的坐标
ans+=fabs(pos-floor(pos+0.5))/(n+m);//累加移动距离
}
printf("%.4lf\n",ans*);//等比例放大
}return ;
}

[ACM_数学] LA 3708 Graveyard [墓地雕塑 圈上新加点 找规律]的更多相关文章

  1. LA 3708 Graveyard 墓地雕塑 NEERC 2006

    在一个周长为 10000 的圆上等距分布着 n 个雕塑.现在又有 m 个新雕塑加入(位置可以随意摆放),希望所有 n + m 个雕塑能在圆周上均匀分布.这就需要移动一些原有的雕塑.要求 n 个雕塑移动 ...

  2. LA 3708 Graveyard(推理 参考系 中位数)

    Graveyard Programming contests became so popular in the year 2397 that the governor of New Earck -- ...

  3. [ACM_模拟][ACM_数学] LA 2995 Image Is Everything [由6个视图计算立方体最大体积]

    Description   Your new company is building a robot that can hold small lightweight objects. The robo ...

  4. LA 3708 Graveyard

    题目链接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show ...

  5. 【贪心】【POJ3154】墓地雕塑(Graveyard, NEERC 2006, LA 3708)需要稍稍加工的(先贪心,再确保能这样贪(可行性&&如果可行必定最优&&非证明最优性)的题)(K)

    例题4  墓地雕塑(Graveyard, NEERC 2006, LA 3708) 在一个周长为10000的圆上等距分布着n个雕塑.现在又有m个新雕塑加入(位置可以随意放),希望所有n+m个雕塑在圆周 ...

  6. 墓地雕塑-LA3708

    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=20& ...

  7. UVALive.3708 Graveyard (思维题)

    UVALive.3708 Graveyard (思维题) 题意分析 这标题真悲伤,墓地. 在周长为1e4的圆周上等距分布着n个雕塑,现在要加入进来m个雕塑,最终还要使得这n+m个雕塑等距,那么原来的n ...

  8. 思维 UVALive 3708 Graveyard

    题目传送门 /* 题意:本来有n个雕塑,等间距的分布在圆周上,现在多了m个雕塑,问一共要移动多少距离: 思维题:认为一个雕塑不动,视为坐标0,其他点向最近的点移动,四舍五入判断,比例最后乘会10000 ...

  9. C/C++每日小练(七)——墓地雕塑

    墓地雕塑 题目描写叙述: 在一个周长为10000的圆上等距分布着n个雕塑. 如今又有m个新雕塑增加(位置能够任意放).希望全部n+m个雕塑在圆周上均匀分布.这就须要移动当中一些原有的雕塑.要求n个雕塑 ...

随机推荐

  1. pyhton函数——黑板客老师课程学习

    1.基本语法 语法: def func_name (arguments)  定义 statements return x,y x,y=func_name(para)   调用 作用域: 可以给内置的函 ...

  2. scala学习心得(2)

    scala类中可以通过override 重载方法 scala定义的函数式类不可被改变,这样传进去的参数就需要提前被检验,可以通过scala.predef包中的方法require方法 定义辅助构造器 d ...

  3. LZW压缩算法

    转载自http://www.cnblogs.com/jillzhang/archive/2006/11/06/551298.html 记录此处仅自己供学习之用 lzw解压缩算法: 用单个字符初始化字符 ...

  4. NDK相关以及同步相关博客收集

    http://www.cnblogs.com/heiing/archive/2013/01/20/2868268.htmlhttp://blog.sina.com.cn/s/blog_461c24d5 ...

  5. PTA List Components

    For a given undirected graph with N vertices and E edges, please list all the connected components b ...

  6. C盘实际占用容量比显示的要少

    1.问题 服务器是Window Server 2008 R2,就几天时间,60G的C盘容量一下子满了,选中所有的文件,占用才20多G. 2.原因 1).有的文件没有系统管理员权限,大小不会显示出来. ...

  7. win8.1 vs2010 C++环境下 编译Android Adb.exe

    1 IntelliSense: cannot open source file "usb100.h"  adb 这是因为没有安装sdk造成的.win7下安装wdk,vs2010能够 ...

  8. 503 Service Temporarily Unavailable

    503 Service Temporarily Unavailable 最近网站刷新后经常出现503 Service Temporarily Unavailable错误,有时有可以,联想到最近在ngi ...

  9. maven学习(4)-本地项目打包发布到私有仓库

    发布本地项目到私服仓库 在前面章节有介绍maven发布本地jar包到私服仓库,这里详细介绍一下步骤. 在项目开发中通常会引用其他的jar,怎样把自己的项目做为一个jar包的形式发布到私服仓库中,主要有 ...

  10. Odoo启动过程

    [本文基于odoo9源码编写] odoo包含的服务有 db object report workflow web[wsgi] Odoo以wsgi 规范提供Web及Web服务db/object/repo ...