Codeves 2800 送外卖 状态压缩DP+floyd
有一个送外卖的,他手上有n份订单,他要把n份东西,分别送达n个不同的客户的手上。n个不同的客户分别在1~n个编号的城市中。送外卖的从0号城市出发,然后n个城市都要走一次(一个城市可以走多次),最后还要回到0点(他的单位),请问最短时间是多少。现在已知任意两个城市的直接通路的时间。
第一行一个正整数n (1<=n<=15)
接下来是一个(n+1)*(n+1)的矩阵,矩阵中的数均为不超过10000的正整数。矩阵的i行j列表示第i-1号城市和j-1号城市之间直接通路的时间。当然城市a到城市b的直接通路时间和城市b到城市a的直接通路时间不一定相同,也就是说道路都是单向的。
一个正整数表示最少花费的时间
3
0 1 10 10
1 0 1 2
10 1 0 10
10 2 10 0
8
1<=n<=15
题解:
看到n的范围就该是状压DP
先跑一遍floyd,
设定dp[i][j] 为当前点i状态为J(所有点是否走过的状态) 的最短路
那么我们枚举状态,起点,终点,转移就好了
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = , M = , mod = 1e9+, inf = 0x3f3f3f3f;
typedef long long ll;
//不同为1,相同为0 int dp[N][<<],ed,n;
int f[N][N];
int main() {
scanf("%d",&n);
for(int i=;i<=n;i++) {
for(int j=;j<=n;j++) {
scanf("%d",&f[i][j]);
}
}
memset(dp,/,sizeof(dp));
for(int k=;k<=n;k++) {
for(int i=;i<=n;i++) {
for(int j=;j<=n;j++) {
f[i][j] = min(f[i][j],f[i][k]+f[k][j]);
}
}
}
dp[][] = ;
ed = (<<(n+)) - ;
for(int i=;i<=ed;i++) {
for(int j = ; j <= n; j++) {
for(int k = ; k <= n; k++) {
if((i|(<<j))!=i) continue;
dp[j][i] = min(dp[j][i], dp[k][i - (<<j)] + f[k][j]);
dp[j][i] = min(dp[j][i], dp[k][i] + f[k][j]);
}
}
}
printf("%d\n",dp[][ed]);
return ;
}
Codeves 2800 送外卖 状态压缩DP+floyd的更多相关文章
- 2800 送外卖[状态压缩dp]
2800 送外卖 时间限制: 2 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description 有一个送外卖的,他手上有n份订单,他 ...
- Codevs 2800 送外卖(状压DP)
2800 送外卖 时间限制: 2 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 有一个送外卖的,他手上有n份订单,他要把n份东西,分别送达n ...
- CODEVS_2800 送外卖 状态压缩+动态规划
原题链接:http://codevs.cn/problem/2800/ 题目描述 Description 有一个送外卖的,他手上有n份订单,他要把n份东西,分别送达n个不同的客户的手上.n个不同的客户 ...
- POJ 3311 Hie with the Pie(Floyd+状态压缩DP)
题是看了这位的博客之后理解的,只不过我是又加了点简单的注释. 链接:http://blog.csdn.net/chinaczy/article/details/5890768 我还加了一些注释代码,对 ...
- poj 3311 floyd+dfs或状态压缩dp 两种方法
Hie with the Pie Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6436 Accepted: 3470 ...
- [poj3311]Hie with the Pie(Floyd+状态压缩DP)
题意:tsp问题,经过图中所有的点并回到原点的最短距离. 解题关键:floyd+状态压缩dp,注意floyd时k必须在最外层 转移方程:$dp[S][i] = \min (dp[S \wedge (1 ...
- codevs 2800 送外卖 TSP问题
2800 送外卖 时间限制: 2 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 有一个送外卖的,他手上有n份订单,他要把n份 ...
- poj 3311(状态压缩DP)
poj 3311(状态压缩DP) 题意:一个人送披萨从原点出发,每次不超过10个地方,每个地方可以重复走,给出这些地方之间的时间,求送完披萨回到原点的最小时间. 解析:类似TSP问题,但是每个点可以 ...
- 学习笔记:状态压缩DP
我们知道,用DP解决一个问题的时候很重要的一环就是状态的表示,一般来说,一个数组即可保存状态.但是有这样的一些题 目,它们具有DP问题的特性,但是状态中所包含的信息过多,如果要用数组来保存状态的话需要 ...
随机推荐
- Gym-101915D Largest Group 最大独立集 Or 状态压缩DP
题面题意:给你N个男生,N个女生,男生与男生之间都是朋友,女生之间也是,再给你m个关系,告诉你哪些男女是朋友,最后问你最多选几个人出来,大家互相是朋友. N最多为20 题解:很显然就像二分图了,男生一 ...
- BZOJ 4262 线段树+期望
思路: 把询问离线下来,查询max和查询min相似,现在只考虑查询max 令sum[l,r,x]表示l到r内的数为左端点,x为右端点的区间询问的答案 那么询问就是sun[l1,r1,r2]-sum[l ...
- java异常处理和自定义异常利用try和catch让程序继续下去(回来自己再写个例子试运行下)
注意:想在catch的参数里使用自定义的异常,则必须先将这个异常抛出才行.(throws是具有抛出异常的能力,并未抛出,throw new MyException是抛出异常,catch是捕获异常,只有 ...
- shopping car 1.0
#!/usr/bin/env python# -*- coding: utf-8 -*-# @File : 20180510001.py# @Author: Anthony.waa# @Date : ...
- java exception 异常错误记录
//异常:Could not obtain transaction-synchronized Session for current thread 做定时器的时候用ApplicationContext ...
- mybatis学习笔记之基础框架(2)
mybatis学习笔记之基础框架(2) mybatis是一个持久层的框架,是apache下的顶级项目. mybatis让程序将主要精力放在sql上,通过mybatis提供的映射方式,自由灵活生成满足s ...
- 7) 十分钟学会android--Activity的生命周期之暂停与恢复
在正常使用app时,前端的activity有时会被其他可见的组件阻塞(obstructed),从而导致当前的activity进入Pause状态.例如,当打开一个半透明的activity时(例如以对话框 ...
- 读《Android电视机(机顶盒)初次开发的一些经验分享》后的笔记
原文: http://blog.csdn.net/tanghongchang123/article/details/52982818 一.基本命令: 1.adb connect [ip] 2. adb ...
- 配置thinkphp项目遇到的坑
坑一: nginx配置必须改成伪静态配置 否则出现nginx 403 forbiddem错误 坑2: 缓存目录权限必须开放 坑3:服务器权限准备: 坑4:防火墙关闭 systemctl stop fi ...
- C语言基础 (10) 变量作用域,生命周期 内存结构
01 课程回顾 1.指针数组 注意: 对于数组来说,在使用sizeof的时候a和&a[0]是不一样的, 虽然以%x打印出来他们都是地址 2.值传递 int a; fun(a); int *** ...