找规律:ans=a*b-a-b

证明:(可见 体系知识

gcd(A, B) = 1 → lcm(A, B) = AB

剩余类,把所有整数划分成m个等价类,每个等价类由相互同余的整数组成

任何数分成m个剩余类,分别为 mk,mk+1,mk+2,……,mk+(m-1)

分别记为{0(mod m)},{1(mod m)}……

而n的倍数肯定分布在这m个剩余类中

因为gcd(m,n)=1,所以每个剩余类中都有一些数是$n$的倍数,并且是平均分配

设 kmin = min { k | nk ∈ {i (mod m) } }, i ∈ [0, m)

则 nkmin 是{i (mod m)}中n的最小倍数。特别的,nm ∈ {0 (mod m)}

nkmin 是个标志,它表明{i (mod m)}中nkmin 后面所有数,即nkmin + jm必定都能被组合出来

那也说明最大不能组合数必定小于nkmin

我们开始寻找max{ nkmin }

lcm(m, n) = mn,所以很明显(m-1)n是最大的

因为(m-1)n是nkmin 中的最大值,所以在剩下的m-1个剩余类中,必定有比它小并且能被m和n组合,这些数就是(m-1)n -1,(m-1)n -2,……,(m-1)n -(m-1)

所以最大不能被组合数就是(m-1)n -m=m*n-m-n

 #include<bits/stdc++.h>
using namespace std;
#define ll long long
ll a,b;
int main()
{
freopen("math.in","r",stdin);
freopen("math.out","w",stdout);
scanf("%lld%lld",&a,&b);
printf("%lld\n",a*b-a-b);
return ;
}

NOIP2017 小凯的疑惑

【比赛】NOIP2017 小凯的疑惑的更多相关文章

  1. 联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)

    前言: 数学题,对于我这种菜B还是需要多磨啊 Simple 首先它问不是好数的数量,可以转化为用总数量减去是好数的数量. 求"好数"的数量: 由裴蜀定理得,如果某个数\(i\)不能 ...

  2. NOIP2017 小凯的疑惑

    题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...

  3. NOIP2017 小凯的疑惑 解题报告(赛瓦维斯特定理)

    题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...

  4. 题解【洛谷P3951】[NOIP2017]小凯的疑惑

    题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...

  5. luogu2951 noip2017 小凯的疑惑

    在考场上我们可以打表发现规律是 $ ab-a-b $ .下面给出证明(看的网上的). 若有正数 $ x $ 不能被 $ a $ , $ b $ 组合出,假设 $ a>b $ ,则存在 \[ x= ...

  6. luogu 3951 小凯的疑惑

    noip2017 D1T1 小凯的疑惑 某zz选手没有看出这道结论题,同时写出了exgcd却不会用,只能打一个哈希表骗了30分 题目大意: 两个互质的正整数a和b,求一个最小的正整数使这个数无法表示为 ...

  7. Luogu [P3951] 小凯的疑惑

    题目详见:[P3951]小凯的疑惑 首先说明:此题为一道提高组的题.但其实代码并没有提高组的水平.主要考的是我们的推断能力,以及看到题后的分析能力. 分析如下: 证明当k>ab-a-b时,小凯可 ...

  8. NOIP 2017 小凯的疑惑

    # NOIP 2017 小凯的疑惑 思路 a,b 互质 求最大不能表示出来的数k 则k与 a,b 互质 这里有一个结论:(网上有证明)不过我是打表找的规律 若 x,y(设x<y) 互质 则 : ...

  9. 2017提高组D1T1 洛谷P3951 小凯的疑惑

    洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...

随机推荐

  1. 学习java常见dos命令

    在java基础学习阶段时一般会在dos命令行下操作文件,这里列出一些常用命令. 打开DOS控制台的方式 按win+r 再输入 cmd 然后回车. 常用DOS命令 d: 回车 盘符切换 (盘符加冒号) ...

  2. python里的魔法方法1(构造与析构)

    魔法方法——构造与析构 1.python编程的魔法方法: (1)魔法方法总是被双下划线包围,例如__init__: (2)魔法方法是面向对象的python的一切. 2.__new__(class[,… ...

  3. 【 C# 】(一) ------------- 泛型带头节点的单链表,双向链表实现

    在编程领域,数据结构与算法向来都是提升编程能力的重点.而一般常见的数据结构是链表,栈,队列,树等.事实上C#也已经封装好了这些数据结构,在头文件 System.Collections.Generic ...

  4. ubuntu/linux中安装Tomcat(附图解详细步骤)

    我的linux系统使用的是ubuntu14 1.首先需要先到Tomcat官网上下载对应linux系统的压缩包,可以直接在Ubuntu系统中进行下载,下载后的默认路径为主文件夹路径下的下载文件目录下 注 ...

  5. 会了这十种Python优雅的写法,让你工作效率翻十倍,一人顶十人用!

      我们都知道,Python 的设计哲学是「优雅」.「明确」.「简单」.这也许很多人选择 Python 的原因.但是我收到有些伙伴反馈,他写的 Python 并不优雅,甚至很臃肿,那可能是你的姿势不对 ...

  6. Netty源码分析第3章(客户端接入流程)---->第2节: 处理接入事件之handle的创建

    Netty源码分析第三章: 客户端接入流程 第二节: 处理接入事件之handle的创建 上一小节我们剖析完成了与channel绑定的ChannelConfig初始化相关的流程, 这一小节继续剖析客户端 ...

  7. Hyperledger Fabric 1.2 --- Chaincode Operator 解读和测试(二)

    本文接上一节是测试部分 搭建一个模拟测试环境 作者将fabric release1.2工程中的 example-e2e进行了改造来进行本次实验: (1)首先我们将examples/e2e_cli/sc ...

  8. Dede织梦验证码不显示,织梦后台登陆验证码不显示解决方法

    关于"织梦验证码不显示"的解决方法 "织梦验证码无法显示出来"的问题分析? 1.之前显示正常,但是换了服务器后就不能够正常显示:(这种通常是网站程序经过迁移后所 ...

  9. Plasma Cash 合约解读

    作者介绍 虫洞社区·签约作者 steven bai Plasma Cash 合约解读 Plasma Cash 合约解读 1. 合约代码 2. 合约文件简单介绍 3. Plasma Cash 的基础数据 ...

  10. 关于go语言中的WaitGroup

    如果你刚接触Go语言并且想用它构建高并发,高性能的应用,弄明白WaitGroups是怎么回事很重要. 在本教程中,我们将掌握以下内容: WaitGroups的用途 一个WaitGroups的简单示例 ...