找规律:ans=a*b-a-b

证明:(可见 体系知识

gcd(A, B) = 1 → lcm(A, B) = AB

剩余类,把所有整数划分成m个等价类,每个等价类由相互同余的整数组成

任何数分成m个剩余类,分别为 mk,mk+1,mk+2,……,mk+(m-1)

分别记为{0(mod m)},{1(mod m)}……

而n的倍数肯定分布在这m个剩余类中

因为gcd(m,n)=1,所以每个剩余类中都有一些数是$n$的倍数,并且是平均分配

设 kmin = min { k | nk ∈ {i (mod m) } }, i ∈ [0, m)

则 nkmin 是{i (mod m)}中n的最小倍数。特别的,nm ∈ {0 (mod m)}

nkmin 是个标志,它表明{i (mod m)}中nkmin 后面所有数,即nkmin + jm必定都能被组合出来

那也说明最大不能组合数必定小于nkmin

我们开始寻找max{ nkmin }

lcm(m, n) = mn,所以很明显(m-1)n是最大的

因为(m-1)n是nkmin 中的最大值,所以在剩下的m-1个剩余类中,必定有比它小并且能被m和n组合,这些数就是(m-1)n -1,(m-1)n -2,……,(m-1)n -(m-1)

所以最大不能被组合数就是(m-1)n -m=m*n-m-n

 #include<bits/stdc++.h>
using namespace std;
#define ll long long
ll a,b;
int main()
{
freopen("math.in","r",stdin);
freopen("math.out","w",stdout);
scanf("%lld%lld",&a,&b);
printf("%lld\n",a*b-a-b);
return ;
}

NOIP2017 小凯的疑惑

【比赛】NOIP2017 小凯的疑惑的更多相关文章

  1. 联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)

    前言: 数学题,对于我这种菜B还是需要多磨啊 Simple 首先它问不是好数的数量,可以转化为用总数量减去是好数的数量. 求"好数"的数量: 由裴蜀定理得,如果某个数\(i\)不能 ...

  2. NOIP2017 小凯的疑惑

    题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...

  3. NOIP2017 小凯的疑惑 解题报告(赛瓦维斯特定理)

    题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...

  4. 题解【洛谷P3951】[NOIP2017]小凯的疑惑

    题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...

  5. luogu2951 noip2017 小凯的疑惑

    在考场上我们可以打表发现规律是 $ ab-a-b $ .下面给出证明(看的网上的). 若有正数 $ x $ 不能被 $ a $ , $ b $ 组合出,假设 $ a>b $ ,则存在 \[ x= ...

  6. luogu 3951 小凯的疑惑

    noip2017 D1T1 小凯的疑惑 某zz选手没有看出这道结论题,同时写出了exgcd却不会用,只能打一个哈希表骗了30分 题目大意: 两个互质的正整数a和b,求一个最小的正整数使这个数无法表示为 ...

  7. Luogu [P3951] 小凯的疑惑

    题目详见:[P3951]小凯的疑惑 首先说明:此题为一道提高组的题.但其实代码并没有提高组的水平.主要考的是我们的推断能力,以及看到题后的分析能力. 分析如下: 证明当k>ab-a-b时,小凯可 ...

  8. NOIP 2017 小凯的疑惑

    # NOIP 2017 小凯的疑惑 思路 a,b 互质 求最大不能表示出来的数k 则k与 a,b 互质 这里有一个结论:(网上有证明)不过我是打表找的规律 若 x,y(设x<y) 互质 则 : ...

  9. 2017提高组D1T1 洛谷P3951 小凯的疑惑

    洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...

随机推荐

  1. Unity扩展编辑器二

    Unity支持自行创建窗口,也支持自定义窗口布局,在Project视图中创建一个Editor文件夹,在文件夹中创建一条脚本 自定义窗口需要让脚本继承EditorWindow在设置MenuItem,此时 ...

  2. 2018Java年底总结

    一年又过去了,这是我的第二年的JAVA开发,总感觉有很多想说的,可惜语言组织能力着实一般,以下列举一些今年的总结. 1.首先告诫一下新入行或者新入职经验不多的小伙伴,写sql的时候根据业务能单表就单表 ...

  3. 百度地图在移动端下click无效的解决方案

    这是由于百度地图在移动端屏蔽了click事件,在网上找到一种方法,利用touchClick方法来模拟click事件,代码如下(需要JQ插件): //给jquery添加touchClick方法 (fun ...

  4. PHP核心技术——异常和错误处理

    PHP只有手动抛出异常后才能捕获异常 $a = null; try { $a = 5/0; echo $a,PHP_EOL; } catch (exception $e) { $e -> get ...

  5. 01-numpy基础简介

    import numpy as np # ndarray ''' # 三种创建方式 1.从python的基础数据对象转化 2.通过numpy内置的函数生成 3.从硬盘(文件)读取数据 ''' # 创建 ...

  6. react-native 常规操作

    1.  关闭xcode打开模拟器的快捷键 , 等常规操作 https://www.jianshu.com/p/f6723f3406b7

  7. shell--read命令

    read命令 -p(提示语句) -n(字符个数) -t(等待时间) -s(不回显) 1.基本读取read命令接收标准输入(键盘)的输入,或其他文件描述符的输入(后面在说).得到输入后,read命令将数 ...

  8. mac 上面安装 tree 命令

    相信很多使用过Linux的用户都用过tree命令,它可以像windows的文件管理器一样清楚明了的显示目录结构. 但是mac下默认是没有 tree命令的. 1.我们可以使用find命令模拟出tree命 ...

  9. iOS静态库.a总结(2017.1.24增加脚本打包方法)

    修改于:2017.1.24 1.什么是库? 库是程序代码的集合,是共享程序代码的一种方式 2.根据源代码的公开情况,库可以分为2种类型 a.开源库 公开源代码,能看到具体实现 ,比如SDWebImag ...

  10. 请教JDBC中的thin和OCI的区别\

    请教JDBC中的thin和OCI的区别 https://zhidao.baidu.com/question/2267123737573204748.html