在平面上有\(n\) 个点$S={x_1,x_2\cdots,x_n}, $ 其中任意两个点之间的距离至少为 \(1\),
证明在这 \(n\) 个点中距离为 \(1\)的点对数不超过 \(3n\).

证明:
如果两点间距离为 1 则相连,所以要求距离为 1 的点对数就是图 G 中的边数.我们只需证明:边数\(|E|\le 3n\)
考虑图G中每个点的度,考虑到与点\(v_k,(k=1,2,\cdots ,n)\)相连的点都在单位圆上,所以\(d(v_k)\le 6\)
结合\(2|E|=\sum\limits_{k=1}^{n}{d(v_k)}\le6n,\)得\(|E|\le 3n\).

MT【127】点对个数两题之一【图论】的更多相关文章

  1. MT【249】离心率两题

    椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1,(a>b>0)$的一个焦点为$F$,过$F$的直线交椭圆于$A,B$两点,$M$是点$A$关于原点的对称点.若 ...

  2. MT【126】点对个数两题之二【图论】

    在平面上有\(n\) 个点$S={x_1,x_2\cdots,x_n}, $ 证明在这 \(n\) 个点中距离为 \(1\) 的点对数不超过 \(\dfrac{n}{4}+\dfrac{2}{2}n^ ...

  3. 清橙A1206.小Z的袜子 && CF 86D(莫队两题)

    清橙A1206.小Z的袜子 && CF 86D(莫队两题) 在网上看了一些别人写的关于莫队算法的介绍,我认为,莫队与其说是一种算法,不如说是一种思想,他通过先分块再排序来优化离线查询问 ...

  4. 最近切的两题SCC的tarjan POJ1236 POJ2186

    两题都是水题,1236第一问求缩点后入度为0的点数,第二问即至少添加多少条边使全图强连通,属于经典做法,具体可以看白书 POJ2186即求缩点后出度为0的那个唯一的点所包含的点数(即SCC里有多少点) ...

  5. 2-SAT两题

    看了大白书,学习了一下two-sat,很有意思的算法.题目就是大白书上的两题. 仅仅放一下代码作为以后的模板参考. #include <stdio.h> #include <algo ...

  6. MT【226】费马点两题

    已知$z_1=2\sqrt{3}i,z_2=3,z_3=-3,|z_3-z_4|=2\sqrt{3},$则$|z_1-z_4|+|z_2-z_4|$的最小值为_____ 提示:费马点最小,取$Z_4( ...

  7. 类似区间计数的种类并查集两题--HDU 3038 & POJ 1733

    1.POJ 1733 Parity game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5744   Accepted: ...

  8. Educational Codeforces Round 58 (Rated for Div. 2) (前两题题解)

    感慨 这次比较昏迷最近算法有点飘,都在玩pygame...做出第一题让人hack了,第二题还昏迷想错了 A Minimum Integer(数学) 水题,上来就能做出来但是让人hack成了tle,所以 ...

  9. noip2016 小结(ac两题+学习总结)

    NOIP2016考试小结 DAY 1 T1 题目描述 小南有一套可爱的玩具小人, 它们各有不同的职业. 有一天, 这些玩具小人把小南的眼镜藏了起来. 小南发现玩具小人们围成了一个圈,它们有的面朝圈内, ...

随机推荐

  1. cadence allegro16.6 pcb文件转pads pcb文件方法教程

    在pcb设计工作中,有时会被要求将pcb文件转成其他软件的格式,pcb Allegro装Pads的方法如下. 在转换的过程中我们需要用到三种软件,ad.pads.allegro.转换的流程是:alle ...

  2. Python 的AES加密与解密-需要安装的模块

    踩雷1: #先导入所需要的包 pip3 install Crypto #再安装pycrtpto pin3 install pycrypto from Crypto.Cipher import AES ...

  3. 传输控制协议--- Transmission Control Protocol (TCP)

    Transmission Control Protocol (TCP) 用于网络通信的传输控制和网络协议套件,包括很多协议,其中最主要的是TCP和IP协议.TCP/IP属于UNIX类系统的内置协议,被 ...

  4. [Codeforces-888C] - K-Dominant Character

    C. K-Dominant Character time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  5. Spring学习(4)IOC容器配置bean:定义与实例化

    一.  IOC容器配置 1. 一些概念 (1)IOC容器: 定义:具有管理对象和管理对象之间的依赖关系的容器. 作用:应用程序无需自己创建对象,对象由IOC容器创建并组装.BeanFactory是IO ...

  6. Hyperledger Fabric(v1.2.0)代码分析1——channel创建

    Hyperledger Fabric(v1.2.0)代码分析1--channel创建 0. e2e_cli Hyperledger Fabric提供了一个e2e的例子,该例中创建了一个基础的区块链网络 ...

  7. Bootstrap学习--栅格系统

    响应式布局页面:即同一套页面可以兼容不同分辨率的设备. Bootstrap依赖于栅格系统实现响应式布局,将一行均分为12个格子,可以指定元素占几个格子. 实现过程 1.定义容器,相当于之前的table ...

  8. Python发送邮件(最全)

    简单邮件传输协议(SMTP)是一种协议,用于在邮件服务器之间发送电子邮件和路由电子邮件. Python提供smtplib模块,该模块定义了一个SMTP客户端会话对象,可用于使用SMTP或ESMTP侦听 ...

  9. Thirteenth scrum meeting 2015/11/11

    发布bug整理集结: 手机用户体验优化优化: (1)主界面和课程界面的字体规格以及界面结构不同 (2)课程图片的大小格式不统一,造成美观下降 ( 3 )按钮的位置不美观 平板用户体验: (1)Tab键 ...

  10. [buaa-SE-2017]个人作业-week3

    个人作业-week3:案例分析 分析产品:Bing词典 Part1:调研&评测 1.软件评测和Bug汇报 这次我选择Bing词典的原因是在于,首先我使用过的词典软件较多,平台涵盖PC端.网站. ...