题目链接

BZOJ3601

题解

挺神的

首先有

\[\begin{aligned}
f(n) &= \sum\limits_{x = 1}^{n} x^{d} [(x,n) = 1] \\
&= \sum\limits_{x = 1}^{n} x^{d} \sum\limits_{c|(x,n)}\mu(c) \\
&= \sum\limits_{c|n}\sum\limits_{x = 1}^{\frac{n}{c}} (cx)^{d} \mu(c) \\
&= \sum\limits_{c|n}\mu(c)c^{d}\sum\limits_{x = 1}^{\frac{n}{c}} x^{d} \\
\end{aligned}
\]

我们记

\[g(x) = \sum\limits_{i = 1}^{x}i^{d}
\]

然后就是最匪夷所思的地方,我们大力猜想这是关于\(x\)的一个\(d + 1\)次多项式

\[g(x) = \sum\limits_{i = 1}^{d + 1}a_ix^{i}
\]

只需高斯消元得出系数\(a_i\)

【upd:其实很显然,展开\(\sum\limits_{i = 0}^{x - 1}(x - i)^{d}\),\(x^d\)有\(x\)项,合并后就是一个关于\(x\)的\(d + 1\)次多项式】

然后\(f(n)\)可以继续化简

\[\begin{aligned}
f(n) &= \sum\limits_{c|n}\mu(c)c^{d}g(\frac{n}{c}) \\
&= \sum\limits_{c|n}\mu(c)c^{d}\sum\limits_{i = 1}^{d + 1} a_i(\frac{n}{c})^{i} \\
&= \sum\limits_{i = 1}^{d + 1}a_i\sum\limits_{c|n}\mu(c)c^{d}(\frac{n}{c})^{i}
\end{aligned}
\]

后面是一个狄利克雷卷积

\(F(x) = \mu(x)x^{d}\)是一个积性函数,\(F(x) = x^{i}\)显然也是一个积性函数

两个积性函数的狄利克雷卷积依旧是一个积性函数

所以我们只需计算\(n\)的所有质因子的函数值乘起来

所以我们记

\[h(p^{k}) = \sum\limits_{c|p^{k}}\mu(c)c^{d}(\frac{p^{k}}{c})^{i}
\]

显然只有\(\mu(1)\)和\(\mu(p)\)两项

化简得

\[h(p^{k}) = p^{ki}(1 - p^{d - i})
\]

可以\(O(1)\)计算

所以式子就化为

\[f(n) = \sum\limits_{i = 1}^{d + 1}a_i\prod_{i=1}^{w}h(p_i^{k_i})
\]

\(O(dw)\)计算即可

总复杂度\(O(d^3 + dw)\)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 105,maxm = 1005,INF = 1000000000,P = 1000000007;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int w,d,p[maxm],k[maxm],a[maxn];
int A[maxn][maxn],N;
inline int qpow(int a,LL b){
if (b < 0) b += P - 1;
int re = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) re = 1ll * re * a % P;
return re;
}
void gause(){
for (int i = 1; i <= N; i++){
int j = i;
/*for (int k = i + 1; k <= N; k++)
if (A[k][i] > A[j][i]) j = k;
if (j != i) for (int k = i; k <= N + 1; k++) swap(A[j][k],A[i][k]);*/
for (j = i + 1; j <= N; j++){
int t = 1ll * A[j][i] * qpow(A[i][i],P - 2) % P;
for (int k = i; k <= N + 1; k++)
A[j][k] = ((A[j][k] - 1ll * A[i][k] * t % P) % P + P) % P;
}
}
for (int i = N; i; i--){
for (int j = i + 1; j <= N; j++)
A[i][N + 1] = ((A[i][N + 1] - 1ll * a[j] * A[i][j] % P) % P + P) % P;
a[i] = 1ll * A[i][N + 1] * qpow(A[i][i],P - 2) % P;
}
}
void cal(){
N = d + 1;
for (int x = 1; x <= N; x++){
A[x][N + 1] = (A[x - 1][N + 1] + qpow(x,d)) % P;
for (int j = 1; j <= N; j++) A[x][j] = qpow(x,j);
}
gause();
int s1 = 0,s2 = 0;
for (int i = 1; i <= N; i++) s1 = (s1 + 1ll * a[i] * qpow(5,i) % P) % P;
for (int i = 1; i <= 5; i++) s2 = (s2 + qpow(i,d)) % P;
}
void work(){
int ans = 0;
for (int i = 1; i <= N; i++){
int tmp = a[i];
for (int j = 1; j <= w; j++)
tmp = 1ll * tmp * qpow(p[j],1ll * k[j] * i) % P * (((1 - qpow(p[j],d - i)) % P + P) % P) % P;
ans = (ans + tmp) % P;
}
printf("%d\n",ans);
}
int main(){
d = read(); w = read();
REP(i,w) p[i] = read(),k[i] = read();
cal();
work();
return 0;
}

BZOJ3601 一个人的数论 【数论 + 高斯消元】的更多相关文章

  1. 【BZOJ3601】一个人的数论 高斯消元+莫比乌斯反演

    [BZOJ3601]一个人的数论 题解:本题的做法还是很神的~ 那么g(n)如何求呢?显然它的常数项=0,我们可以用待定系数法,将n=1...d+1的情况代入式子中解方程,有d+1个方程和d+1个未知 ...

  2. BZOJ3601. 一个人的数论(狄利克雷卷积+高斯消元)及关于「前 $n$ 个正整数的 $k$ 次幂之和是关于 $n$ 的 $k+1$ 次多项式」的证明

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3601 题解 首先还是基本的推式子: \[\begin{aligned}f_d(n) &a ...

  3. 【bzoj3601】一个人的数论 莫比乌斯反演+莫比乌斯函数性质+高斯消元

    Description Sol 这题好难啊QAQ 反正不看题解我对自然数幂求和那里是一点思路都没有qwq 先推出一个可做一点的式子: \(f(n)=\sum_{k=1}^{n}[(n,k)=1]k^d ...

  4. [bzoj3601] 一个人的数论 [莫比乌斯反演+高斯消元]

    题面 传送门 思路 这题妙啊 先把式子摆出来 $f_n(d)=\sum_{i=1}^n[gcd(i,n)==1]i^d$ 这个$gcd$看着碍眼,我们把它反演掉 $f_n(d)=\sum_{i=1}^ ...

  5. 【bzoj3601】一个人的数论 莫比乌斯反演+高斯消元

    题目描述 题解 莫比乌斯反演+高斯消元 (前方高能:所有题目中给出的幂次d,公式里为了防止混淆,均使用了k代替) #include <cstdio> #include <cstrin ...

  6. BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...

  7. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  8. 【BZOJ-3270】博物馆 高斯消元 + 概率期望

    3270: 博物馆 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 292  Solved: 158[Submit][Status][Discuss] ...

  9. *POJ 1222 高斯消元

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9612   Accepted: 62 ...

随机推荐

  1. Netty源码分析第1章(Netty启动流程)---->第2节: NioServerSocketChannel的创建

    Netty源码分析第一章:  Server启动流程 第二节:NioServerSocketChannel的创建 我们如果熟悉Nio, 则对channel的概念则不会陌生, channel在相当于一个通 ...

  2. FinTech领域实践:乐维监控助力西南某上市城商行IT运维转型升级!

    FinTech领域实践:乐维监控助力西南某上市城商行IT运维转型升级! 项目背景 随着信息化的逐步深入,企业业务运营活动对IT的依赖程度越来越高,传统的局部.粗放.碎片化的IT运维管理模式已经无法满足 ...

  3. [redis] 几种redis数据导出导入方式

    环境说明: 172.20.0.1 redis源实例 172.20.0.2 redis目标实例 172.20.0.3 任意linux系统 一.redis-dump方式 1.安装redis-dump工具 ...

  4. Final发布:文案+美工展示博客

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2476 小组介绍 组长:付佳 组员:张俊余 李文涛 孙赛佳 田良 于洋 段 ...

  5. bing词典

    一.bug寻找 bug1:点击单词挑战之后选择四级词汇,然后一直狂击答案,点到一个时候就会出现一个情况:不管点击哪一个选项都不会跳至下一题,而且屏幕上方的已做题目数 x/20中的x会乱跳. bug2: ...

  6. Daily Scrum (2015/11/7)

    今晚谢金洛同学的UI工作完成,我们进行了UI和后端的拼接,准备开始规范化地进行系统测试. 成员 今日任务及成果 时间 明日任务 符美潇 1.把之前PM分配的编码任务及其说明准备好发给PM 1h 待定 ...

  7. Trick and Magic(OO博客第二弹)

    代码是设计,不是简单的陈述.而设计不仅要求功能的正确性,更注重设计风格和模式. 真正可以投入应用的程序设计,不是那种无脑的“黑箱”,超巨大的数组,多重循环暴力搜索,成吨全局变量……事实上,在实际应用中 ...

  8. java 实验一

       步骤 耗时h 百分比% 需求分析 0.3h 7.5 设计 2.5h 62.5 代码实现 0.5h 12.5 测试 0,2h 5 分析总结 0.5h 12.5 实验一 截图 实验二: 实验三 实现 ...

  9. 软工1816 · Beta冲刺(4/7)

    团队信息 队名:爸爸饿了 组长博客:here 作业博客:here 组员情况 组员1(组长):王彬 过去两天完成了哪些任务 推进安卓端各个接口的开发,安卓端各个接口已经基本完成 完成食堂各个平面图的绘制 ...

  10. iis托管管道模式-学习

    文章;IIS 7 托管管道模式 经典模式(Classic) 集成模式(Integrated) 分析与理解 我们可以通过应用程序池设置管道模式,这项功能对IIS管理员尤其有用,因为这样既可以令一台服务器 ...