题目链接

BZOJ3601

题解

挺神的

首先有

\[\begin{aligned}
f(n) &= \sum\limits_{x = 1}^{n} x^{d} [(x,n) = 1] \\
&= \sum\limits_{x = 1}^{n} x^{d} \sum\limits_{c|(x,n)}\mu(c) \\
&= \sum\limits_{c|n}\sum\limits_{x = 1}^{\frac{n}{c}} (cx)^{d} \mu(c) \\
&= \sum\limits_{c|n}\mu(c)c^{d}\sum\limits_{x = 1}^{\frac{n}{c}} x^{d} \\
\end{aligned}
\]

我们记

\[g(x) = \sum\limits_{i = 1}^{x}i^{d}
\]

然后就是最匪夷所思的地方,我们大力猜想这是关于\(x\)的一个\(d + 1\)次多项式

\[g(x) = \sum\limits_{i = 1}^{d + 1}a_ix^{i}
\]

只需高斯消元得出系数\(a_i\)

【upd:其实很显然,展开\(\sum\limits_{i = 0}^{x - 1}(x - i)^{d}\),\(x^d\)有\(x\)项,合并后就是一个关于\(x\)的\(d + 1\)次多项式】

然后\(f(n)\)可以继续化简

\[\begin{aligned}
f(n) &= \sum\limits_{c|n}\mu(c)c^{d}g(\frac{n}{c}) \\
&= \sum\limits_{c|n}\mu(c)c^{d}\sum\limits_{i = 1}^{d + 1} a_i(\frac{n}{c})^{i} \\
&= \sum\limits_{i = 1}^{d + 1}a_i\sum\limits_{c|n}\mu(c)c^{d}(\frac{n}{c})^{i}
\end{aligned}
\]

后面是一个狄利克雷卷积

\(F(x) = \mu(x)x^{d}\)是一个积性函数,\(F(x) = x^{i}\)显然也是一个积性函数

两个积性函数的狄利克雷卷积依旧是一个积性函数

所以我们只需计算\(n\)的所有质因子的函数值乘起来

所以我们记

\[h(p^{k}) = \sum\limits_{c|p^{k}}\mu(c)c^{d}(\frac{p^{k}}{c})^{i}
\]

显然只有\(\mu(1)\)和\(\mu(p)\)两项

化简得

\[h(p^{k}) = p^{ki}(1 - p^{d - i})
\]

可以\(O(1)\)计算

所以式子就化为

\[f(n) = \sum\limits_{i = 1}^{d + 1}a_i\prod_{i=1}^{w}h(p_i^{k_i})
\]

\(O(dw)\)计算即可

总复杂度\(O(d^3 + dw)\)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 105,maxm = 1005,INF = 1000000000,P = 1000000007;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int w,d,p[maxm],k[maxm],a[maxn];
int A[maxn][maxn],N;
inline int qpow(int a,LL b){
if (b < 0) b += P - 1;
int re = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) re = 1ll * re * a % P;
return re;
}
void gause(){
for (int i = 1; i <= N; i++){
int j = i;
/*for (int k = i + 1; k <= N; k++)
if (A[k][i] > A[j][i]) j = k;
if (j != i) for (int k = i; k <= N + 1; k++) swap(A[j][k],A[i][k]);*/
for (j = i + 1; j <= N; j++){
int t = 1ll * A[j][i] * qpow(A[i][i],P - 2) % P;
for (int k = i; k <= N + 1; k++)
A[j][k] = ((A[j][k] - 1ll * A[i][k] * t % P) % P + P) % P;
}
}
for (int i = N; i; i--){
for (int j = i + 1; j <= N; j++)
A[i][N + 1] = ((A[i][N + 1] - 1ll * a[j] * A[i][j] % P) % P + P) % P;
a[i] = 1ll * A[i][N + 1] * qpow(A[i][i],P - 2) % P;
}
}
void cal(){
N = d + 1;
for (int x = 1; x <= N; x++){
A[x][N + 1] = (A[x - 1][N + 1] + qpow(x,d)) % P;
for (int j = 1; j <= N; j++) A[x][j] = qpow(x,j);
}
gause();
int s1 = 0,s2 = 0;
for (int i = 1; i <= N; i++) s1 = (s1 + 1ll * a[i] * qpow(5,i) % P) % P;
for (int i = 1; i <= 5; i++) s2 = (s2 + qpow(i,d)) % P;
}
void work(){
int ans = 0;
for (int i = 1; i <= N; i++){
int tmp = a[i];
for (int j = 1; j <= w; j++)
tmp = 1ll * tmp * qpow(p[j],1ll * k[j] * i) % P * (((1 - qpow(p[j],d - i)) % P + P) % P) % P;
ans = (ans + tmp) % P;
}
printf("%d\n",ans);
}
int main(){
d = read(); w = read();
REP(i,w) p[i] = read(),k[i] = read();
cal();
work();
return 0;
}

BZOJ3601 一个人的数论 【数论 + 高斯消元】的更多相关文章

  1. 【BZOJ3601】一个人的数论 高斯消元+莫比乌斯反演

    [BZOJ3601]一个人的数论 题解:本题的做法还是很神的~ 那么g(n)如何求呢?显然它的常数项=0,我们可以用待定系数法,将n=1...d+1的情况代入式子中解方程,有d+1个方程和d+1个未知 ...

  2. BZOJ3601. 一个人的数论(狄利克雷卷积+高斯消元)及关于「前 $n$ 个正整数的 $k$ 次幂之和是关于 $n$ 的 $k+1$ 次多项式」的证明

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3601 题解 首先还是基本的推式子: \[\begin{aligned}f_d(n) &a ...

  3. 【bzoj3601】一个人的数论 莫比乌斯反演+莫比乌斯函数性质+高斯消元

    Description Sol 这题好难啊QAQ 反正不看题解我对自然数幂求和那里是一点思路都没有qwq 先推出一个可做一点的式子: \(f(n)=\sum_{k=1}^{n}[(n,k)=1]k^d ...

  4. [bzoj3601] 一个人的数论 [莫比乌斯反演+高斯消元]

    题面 传送门 思路 这题妙啊 先把式子摆出来 $f_n(d)=\sum_{i=1}^n[gcd(i,n)==1]i^d$ 这个$gcd$看着碍眼,我们把它反演掉 $f_n(d)=\sum_{i=1}^ ...

  5. 【bzoj3601】一个人的数论 莫比乌斯反演+高斯消元

    题目描述 题解 莫比乌斯反演+高斯消元 (前方高能:所有题目中给出的幂次d,公式里为了防止混淆,均使用了k代替) #include <cstdio> #include <cstrin ...

  6. BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...

  7. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  8. 【BZOJ-3270】博物馆 高斯消元 + 概率期望

    3270: 博物馆 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 292  Solved: 158[Submit][Status][Discuss] ...

  9. *POJ 1222 高斯消元

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9612   Accepted: 62 ...

随机推荐

  1. Unity 自定义编辑器窗口 画线

    最近在学习状态机, 想自己实现一个可视化编辑器, 需要将多个状态之间用线条连接起来, 效果如下: 代码如下: Material m;Vector2 start;Vector2 end;Color co ...

  2. mac 下删除行末^M 字符

    在vi 打开文件模式下进行字符替换 :%s/^M/\r/g   //这里的^M是同时按ctrl+v+m获得的,否则会显示找不到^M

  3. Python 利用 BeautifulSoup 爬取网站获取新闻流

    0. 引言 介绍下 Python 用 Beautiful Soup 周期性爬取 xxx 网站获取新闻流: 图 1 项目介绍 1. 开发环境 Python: 3.6.3 BeautifulSoup:   ...

  4. Python科学测量与计算库Pymeasure: 控制你的仪器进行自动测试和科学计算

    Python这种脚本语言因其语法简单,工具包丰富成熟,使用起来非常方便.在很多领域被广泛使用,今天介绍的是python在仪器控制应用领域,python在仪器控制领域相关的书籍可以参考<真实世界的 ...

  5. MAC node + git + bower 简单安装

    一 node 安装 打开https://nodejs.org/en/ nodejs官网 下载安装文件 双击.pkg 文件 自动安装即可 二 安装git 打开 http://code.google.co ...

  6. deep learning loss总结

    在深度学习中会遇到各种各样的任务,我们期望通过优化最终的loss使网络模型达到期望的效果,因此loss的选择是十分重要的. cross entropy loss cross entropy loss和 ...

  7. 比较语义分割的几种结构:FCN,UNET,SegNet,PSPNet和Deeplab

    简介 语义分割:给图像的每个像素点标注类别.通常认为这个类别与邻近像素类别有关,同时也和这个像素点归属的整体类别有关.利用图像分类的网络结构,可以利用不同层次的特征向量来满足判定需求.现有算法的主要区 ...

  8. printf命令详解

    基础命令学习目录首页 本文是Linux Shell系列教程的第(八)篇,更多shell教程请看:Linux Shell系列教程 在上一篇:Linux Shell系列教程之(七)Shell输出这篇文章中 ...

  9. Xcode中的文件类型

    文件类型 Xcode中的文件类型,总共4种类型: 1 普通文件(File) 2 Group(在Xcode中就是黄色的文件夹) 3 Folder(在Xcode中就是蓝色的文件夹) 4 Framework ...

  10. HDU 4529 郑厂长系列故事——N骑士问题 状压dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4529 郑厂长系列故事--N骑士问题 Time Limit: 6000/3000 MS (Java/O ...