题目链接:http://codeforces.com/contest/1097/problem/D

题目大意:给你n和k,每一次可以选取n的因子代替n,然后问你k次操作之后,每个因子的期望。

具体思路:对于给定的n,我们可以将n转换为,n=p1^(k1)*p2^(k2)*p3^(k3)......,然后我们求期望的时候,我们可以求每个因子的期望,然后再将每个因子的期望相乘就可以了(积性函数的性质)。

然后我们使用一个dp数组,dp[i][j]代表某一个因子,经过i次操作,出现j次的概率。

数学期望:离散随机变量的一切可能值工与对应的概率P的乘积之和称为数学期望

AC代码:

#include<bits/stdc++.h>
using namespace std;
# define LL long long
# define inf 0x3f3f3f3f
const int maxn = 1e5+100;
const int mod = 1e9+7;
LL dp[maxn][60],inv[maxn];
LL n, k;
LL cal(LL num,LL tim)
{
for(LL i=1; i<tim; i++)
dp[0][i]=0;
dp[0][tim]=1;
for(LL i=1; i<=k; i++)
{
for(LL ii=0; ii<=tim; ii++)
{
dp[i][ii]=0;
for(LL iii=ii; iii<=tim; iii++)
dp[i][ii]=(dp[i][ii]+dp[i-1][iii]*inv[iii]%mod)%mod;
}
}
LL t1=0,t2=1;
for(LL i=0; i<=tim; i++)
{
t1=(t1+dp[k][i]*t2%mod)%mod;
t2=t2*num%mod;
}
return t1%mod;
}
int main()
{
inv[1]=1;
for (LL i=2; i<=60; i++)
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
scanf("%lld %lld",&n,&k);
LL ans=1;
for(LL i=2; i*i<=n; i++)
{
int num=0;
while(n%i==0)
{
n/=i;
num++;
}
if(num==0)
continue;
ans=ans*cal(i,num)%mod;
}
if (n!=1)
ans=ans*cal(n,1)%mod;
printf("%lld\n",ans);
return 0;
}

D. Makoto and a Blackboard(积性函数+DP)的更多相关文章

  1. CF1097D Makoto and a Blackboard 积性函数、概率期望、DP

    传送门 比赛秒写完ABC结果不会D--最后C还fst了qwq 首先可以想到一个约数个数\(^2\)乘上\(K\)的暴力DP,但是显然会被卡 在\(10^{15}\)范围内因数最多的数是\(978217 ...

  2. Makoto and a Blackboard CodeForces - 1097D (积性函数dp)

    大意: 初始一个数字$n$, 每次操作随机变为$n$的一个因子, 求$k$次操作后的期望值. 设$n$经过$k$次操作后期望为$f_k(n)$. 就有$f_0(n)=n$, $f_k(n)=\frac ...

  3. Bash Plays with Functions CodeForces - 757E (积性函数dp)

    大意: 定义函数$f_r(n)$, $f_0(n)$为pq=n且gcd(p,q)=1的有序对(p,q)个数. $r \ge 1$时, $f_r(n)=\sum\limits_{uv=n}\frac{f ...

  4. Codeforces757E.Bash Plays With Functions(积性函数 DP)

    题目链接 \(Description\) q次询问,每次给定r,n,求\(F_r(n)\). \[ f_0(n)=\sum_{u\times v=n}[(u,v)=1]\\ f_{r+1}(n)=\s ...

  5. Codeforces E. Bash Plays with Functions(积性函数DP)

    链接 codeforces 题解 结论:\(f_0(n)=2^{n的质因子个数}\)= 根据性质可知\(f_0()\)是一个积性函数 对于\(f_{r+1}()\)化一下式子 对于 \[f_{r+1} ...

  6. Problem : 这个题如果不是签到题 Asm.Def就女装(积性函数dp

    https://oj.neu.edu.cn/problem/1460 思路:若n=(p1^a1)*(p2^a2)...(pn^an),则f(n,0)=a1*a2*...*an,显然f(n,0)是积性函 ...

  7. CF 757E Bash Plays with Functions——积性函数+dp+质因数分解

    题目:http://codeforces.com/contest/757/problem/E f0[n]=2^m,其中m是n的质因子个数(种类数).大概是一种质因数只能放在 d 或 n/d 两者之一. ...

  8. bzoj2693--莫比乌斯反演+积性函数线性筛

    推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...

  9. hdu1452 Happy 2004(规律+因子和+积性函数)

    Happy 2004 题意:s为2004^x的因子和,求s%29.     (题于文末) 知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en 因子 ...

随机推荐

  1. C# 单例模式的多种简单实现

    什么是单例模式? 这里我就不做过多的解释了, 毕竟关于Singleton的资料实在是太多太多了.点击这里 1.简单的思路就是, 创建对象单例的动作转移到另外的行为上面, 利用一个行为去创建对象自身, ...

  2. Qt——数据库编程

    一.概述 Qt提供了一个类似JDBC的数据库接口,需要为每个可以连接的特定数据库提供驱动程序,可以通过 QStringList QSqlDatabase::drivers() 知道当前版本的Qt哪些驱 ...

  3. BZOJ2186 SDOI2008沙拉公主的困惑(数论)

    由于n!是m!的倍数,而对于每个与m!互质且小于m!的数x,x+m!.x+2*m!……也与其互质,所以答案即为(n!/m!)*φ(m!). φ(m!)=m!*∏(1-1/pi).其中的pi即为1~m中 ...

  4. JVM工作原理 - 内存空间

    大多数 JVM 将内存区域划分为 Method Area(Non-Heap)(方法区) ,Heap(堆) , Program Counter Register(程序计数器) ,   VM Stack( ...

  5. vyatta的fork开源版本vyos

    vyatta的fork开源版本vyos 来源: https://www.reddit.com/r/networking/comments/3dvwfy/who_here_is_using_vyos/ ...

  6. Nagios通过企业微信报警

    主要分两部分进行: 注册企业微信,自建应用,获取与发送消息相关的信息: 编写调用微信API脚本(bash),配置Nagios微信报警: 一.企业微信 1.注册企业微信:https://work.wei ...

  7. 【转】关于在linux下清屏的几种技巧

    在windows的DOS操作界面里面,清屏的命令是cls,那么在linux 里面的清屏命令是什么呢?下面笔者分享几种在linux下用过的清屏方法. 1.clear命令.这个命令将会刷新屏幕,本质上只是 ...

  8. 【spoj SUBST1】 New Distinct Substrings

    http://www.spoj.com/problems/SUBST1/ (题目链接) 题意 求字符串的不相同的子串个数 Solution 后缀数组论文题. 每个子串一定是某个后缀的前缀,那么原问题等 ...

  9. 解题:USACO12OPEN Bookshelf

    题面 从零开始的DP学习之肆 当DP方程中的一部分具有某种单调性时可以用数据结构或者预处理维护来降低复杂度 一开始没有看懂题,尴尬,后来发现题目可以简化成这个样子: 将一个序列划分为若干段,每段长度不 ...

  10. sql数据库设计学习---数据库设计规范化的五个要求

    http://blog.csdn.net/taijianyu/article/details/5945490 一:表中应该避免可为空的列: 二:表不应该有重复的值或者列: 三: 表中记录应该有一个唯一 ...