【BZOJ】4565: [Haoi2016]字符合并
4565: [Haoi2016]字符合并
Time Limit: 20 Sec Memory Limit: 256 MB
Submit: 690 Solved: 316
[Submit][Status][Discuss]
Description
Input
Output
输出一个整数表示答案
Sample Input
101
1 10
1 10
0 20
1 30
Sample Output
//第3行到第6行表示长度为2的4种01串合并方案。00->1,得10分,01->1得10分,10->0得20分,11->1得30分。
Solution
区间DP+状压DP
看到$k$的范围容易想到把$k$压起来。看到是算区间贡献容易想到区间DP。
区间DP需要分段,再合并。我们可以想到把一段区间强制合并成$0/1$,与另一段合并。也就是$dp[i][mid-1][s]+dp[mid][j][0/1]$,将$mid-j$强制合并成$0/1$,因此枚举$mid$分段。
首先了解一个东西,长度为$len$的一段区间,每次相邻$k$个合并,最后剩下的区间长度是$len%(k-1)?len%(k-1):k-1$
知道了这一点我们就可以确定$i-(mid-1)$这一段的状态了,然后每次判断转移的两个状态是否合法,转移即可。
所以我们枚举区间$[i,j]$,如果长度为$k$,就直接合并获得分数,但是注意在转移的时候不要在$f$数组中直接更新。举例说明$a[1]=0 a[2]=1$,所以$f[1][2][1]$是合法的状态,假设$01$可以合并成$0$,那么就可以更新$f[1][2][0]$,但是$f[1][2][0]$一旦成了合法状态,那么在之后枚举到$t=0$的时候,$dp[1][2][0]$又会去更新别的状态,但是这样是不合法的,所以我们要用临时数组来记录值,最后赋值给$f$数组。(by)
Code
#include<bits/stdc++.h>
#define LL long long
using namespace std; int n, k, a[], c[];
char s[];
LL dp[][][], w[]; int main() {
scanf("%d%d", &n, &k);
scanf("%s", s + );
for(int i = ; i <= n; i ++)
if(s[i] == '') a[i] = ;
else a[i] = ;
memset(dp, , sizeof(dp));
LL oo = -dp[][][];
for(int i = ; i < ( << k); i ++)
scanf("%d %lld", &c[i], &w[i]);
for(int i = ; i <= n; i ++) dp[i][i][a[i]] = ;
for(int len = ; len <= n; len ++)
for(int i = ; i + len - <= n; i ++) {
int j = i + len - ;
int tot = (j - i) % (k - ) ? (j - i) % (k - ) : k - ;
for(int mid = j; mid >= i; mid -= (k - ))
for(int s = ; s < ( << tot); s ++) {
if(dp[i][mid - ][s] != -oo) {
if(dp[mid][j][] != -oo) dp[i][j][s << | ] = max(dp[i][j][s << | ], dp[i][mid - ][s] + dp[mid][j][]);
if(dp[mid][j][] != -oo) dp[i][j][s << ] = max(dp[i][j][s << ], dp[i][mid - ][s] + dp[mid][j][]);
}
}
if(tot == k - ) {
LL g[];
g[] = g[] = -oo;
for(int s = ; s < ( << k); s ++)
if(dp[i][j][s] != -oo)
g[c[s]] = max(g[c[s]], dp[i][j][s] + w[s]);
dp[i][j][] = g[], dp[i][j][] = g[];
}
}
LL ans = ;
for(int i = ; i < ( << k); i ++)
ans = max(ans, dp[][n][i]);
printf("%lld", ans);
return ;
}
【BZOJ】4565: [Haoi2016]字符合并的更多相关文章
- BZOJ4565 [Haoi2016]字符合并
题意 有一个长度为\(n\)的\(01\)串,你可以每次将相邻的\(k\)个字符合并,得到一个新的字符并获得一定分数.得到的新字符和分数由这\(k\)个字符确定.你需要求出你能获得的最大分数. \(n ...
- [Haoi2016]字符合并 题解
tijie 时间限制: 2 Sec 内存限制: 256 MB 题目描述 有一个长度为 n 的 01 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数.得到的新字 符和分数由这 ...
- 【BZOJ4565】 [Haoi2016]字符合并
Description 有一个长度为 n 的 01 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数.得到的新字 符和分数由这 k 个字符确定.你需要求出你能获得的最大分数. I ...
- 题解 [HAOI2016]字符合并
题目传送门 Description 有一个长度为 \(n\) 的 \(01\) 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数. 得到的新字符和分数由这 k 个字符确定.你需要 ...
- 【BZOJ 4565】 [Haoi2016]字符合并 区间dp+状压
考试的时候由于总是搞这道题导致爆零~~~~~(神™倒序难度.....) 考试的时候想着想着想用状压,但是觉得不行又想用区间dp,然而正解是状压着搞区间,这充分说明了一件事,状压不是只是一种dp而是一种 ...
- BZOJ4565 HAOI2016字符合并(区间dp+状压dp)
设f[i][j][k]为将i~j的字符最终合并成k的答案.转移时只考虑最后一个字符是由哪段后缀合成的.如果最后合成为一个字符特殊转移一下. 复杂度看起来是O(n32k),实际常数极小达到O(玄学). ...
- 2018.10.25 bzoj4565: [Haoi2016]字符合并(区间dp+状压)
传送门 当看到那个k≤8k\le 8k≤8的时候就知道需要状压了. 状态定义:f[i][j][k]f[i][j][k]f[i][j][k]表示区间[i,j][i,j][i,j]处理完之后的状态为kkk ...
- [BZOJ4565][HAOI2016]字符合并(区间状压DP)
https://blog.csdn.net/xyz32768/article/details/81591955 首先区间DP和状压DP是比较明显的,设f[L][R][S]为将[L,R]这一段独立操作最 ...
- [HAOI2016]字符合并
Luogu3736 很容易想到直接DP,关键是枚举顺序. \(1.\)设后一段构成最后一个点,前一段构成前面的点,那么能得到\(1\)个点的数量要求 : \(1,k,2k-1...\)相差\(k-1\ ...
随机推荐
- mybatis模糊查询防止SQL注入
SQL注入,大家都不陌生,是一种常见的攻击方式.攻击者在界面的表单信息或URL上输入一些奇怪的SQL片段(例如“or ‘1’=’1’”这样的语句),有可能入侵参数检验不足的应用程序.所以,在我们的应用 ...
- 【黑客免杀攻防】读书笔记15 - 源码免杀、C++壳的编写
1.源码免杀 1.1 定位产生特征的源码 定位文件特征 1.根据MyCCL的特征码定位工具,定位出有特征的地址 2.根据VS的反汇编窗口,输入有特征的地址得到特征地址与源码的关系 3.插入Messag ...
- Virut样本取证特征
1.网络特征 ant.trenz.pl ilo.brenz.pl 2.文件特征 通过对文件的定位,使用PEID查看文件区段,如果条件符合增加了7个随机字符区段的文件,则判定为受感染文件. 3.受感染特 ...
- MySQL字符集 GBK、GB2312、UTF8区别 解决 MYSQL中文乱码问题 收藏 MySQL中涉及的几个字符集
MySQL中涉及的几个字符集 character-set-server/default-character-set:服务器字符集,默认情况下所采用的.character-set-database:数据 ...
- aarch64_fc26_url
http://linux.yz.yamagata-u.ac.jp/pub/linux/fedora-projects/fedora-secondary/releases/26/Everything/a ...
- sicily 1500. Prime Gap
Description The sequence of n ? 1 consecutive composite numbers (positive integers that are not prim ...
- 【hihocoder1251】Today is a rainy day
#include<bits/stdc++.h> ; ; const int inf=0x3f3f3f3f; using namespace std; char s1[N],s2[N]; ] ...
- 数据库-mysql事务
MySQL 事务 MySQL 事务主要用于处理操作量大,复杂度高的数据.比如说,在人员管理系统中,你删除一个人员,你即需要删除人员的基本资料,也要删除和该人员相关的信息,如信箱,文章等等,这样,这些数 ...
- python之uinttest单元测试框架
unittest,是python中针对单元测试的一个测试框架 相当于python版的junit 简单举个例子: 如图,使用时,测试类需要继承单元测试TestCase这个类 必须要有setUp()和te ...
- Java容器---迭代器
任何容器类,都必须有某种方式可以插入元素并将它们再次取回.毕竟,持有事物是容器最基本的工作. 对于List, add0是插入元素的方法之一,而get()是取出元素的方法之一. 如果从更高层的角度思考, ...